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Always in movement 
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Adaptable  

Warm 

Bright quality 

Ephemeral and  
finite lifespan

Organic  
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Immune cells

~30 trillion cells

Neurons, glia

Heart, liver, …

Intact skin

Energy flowCadaver Thinking, feeling, breathing, 
conscious person

~20,000 genes

Mitochondria

The vital ingredient of life



What is Energy ?



Energy is the potential for change



Universal features of Energy

1. Energy is conserved and transformed (different forms)

2. Energy always flows (entropy)

3. Energy is quantized (comes in packets)



Gu et al. Sci Rep 2018

It costs energy to shift states





ENERGY transfer

Conductive media



The conductive media in animals is  
Energy Metabolism



What are the energetic principles of 
human health ?



1. Total energy transformation capacity is limited

2. Energy allocation follows a hierarchy of energy needs

3. The brain controls the (re)allocation of energy

Three energetic principles of human health
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(under review)

The human energy budget



Pontzer et al. Science 2021
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There is a fixed limit to human energy expenditure

Thurber et al. Sci Adv 2019
(under review)
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Maslow’s hierarchy of human needs

First domains 
to go under 

stress



HIERARCHY OF ENERGY NEEDS
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Shaulson et al. Nat Aging 2024



The brain moderates  
physiological energy tradeoffs

Shaulson et al. Nat Aging 2024
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The brain–body energy conservation model 
of aging

Evan D. Shaulson1, Alan A. Cohen    2,3 & Martin Picard    1,2,4,5 

Aging involves seemingly paradoxical changes in energy metabolism. 
Molecular damage accumulation increases cellular energy expenditure, 
yet whole-body energy expenditure remains stable or decreases with 
age. We resolve this apparent contradiction by positioning the brain as 
the mediator and broker in the organismal energy economy. As somatic 
tissues accumulate damage over time, costly intracellular stress responses 
are activated, causing aging or senescent cells to secrete cytokines 
that convey increased cellular energy demand (hypermetabolism) to 
the brain. To conserve energy in the face of a shrinking energy budget, 
the brain deploys energy conservation responses, which suppress 
low-priority processes, producing fatigue, physical inactivity, blunted 
sensory capacities, immune alterations and endocrine ‘de!cits’. We term 
this cascade the brain–body energy conservation (BEC) model of aging. 
The BEC outlines (1) the energetic cost of cellular aging, (2) how brain 
perception of senescence-associated hypermetabolism may drive the 
phenotypic manifestations of aging and (3) energetic principles underlying 
the modi!ability of aging trajectories by stressors and geroscience 
interventions.

All aging mammals have a brain (Box 1) that evolved to promote survival 
by regulating physiology and behavior. To accomplish this task, the 
brain (1) senses afferent sensory and metabolic inputs from virtually 
every cell in the organism, (2) integrates intrinsic and extrinsic sensory, 
endocrine, immune and metabolic information and (3) responds with 
neuroendocrine and sensorimotor outputs1,2. Informed by the totality 
of the organism’s internal milieu, the brain captures the Gestalt state 
of the organism, integrates this information with anticipated demands 
and mobilizes appropriate mental states (for example, fatigue or vigor) 
and regulatory behaviors (eating, fasting or sleeping) to promote sur-
vival. As the master orchestrator of behavior and physiology, the brain 
ensures survival by prioritizing physiological needs3.

One of the most acutely vital survival needs is energy. Conse-
quently, several well-defined cellular energy-sensing mechanisms exist 

to couple cell behavior to the immediate metabolic state4–6. The brain 
also evolved to tune organismal physiology to operate an economy of 
energy, optimizing functional capacities while minimizing energetic 
costs. As the organismal energy budget is limited7, the brain mediates 
tradeoffs that might appear detrimental when viewed from the per-
spective of the deficits they induce but are in fact adaptive mechanisms 
that balance competing energy demands to promote survival.

Combining its ‘physiological hub’ status and the evolutionary 
driving force of energy, the brain has acquired two main energy-related 
skills relevant to aging: (1) an exquisite sensitivity to signals of energy 
supply and demands (glucose, leptin, ghrelin, lactate, growth differ-
entiation factor 15 (GDF15) and other cytokines) by which peripheral 
tissues inform the brain of their energy status and (2) a wide array 
of hormonal, neural, behavioral and cognitive outputs capable of 
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There are simple energetic principles driving the flow and 
transformation of energy through our biology

A major hub of energy metabolism : Mitochondria



W h a t   d o   m i t o c h o n d r i a   l o o k   l i k e ?







Nature Metabolism

Perspective https://doi.org/10.1038/s42255-023-00783-1

network distribution of mitochondria within the cell cytoplasm and 
perinuclear region92,93, or in specialized appendages such as presyn-
aptic terminals94, also bear direct functional significance, but only in 
the context of the cell.

Mitochondrial features. Features are the intrinsic building blocks of 
mitochondria. They are generally static molecular components, such 
as the abundance of specific proteins, membrane lipids, mtDNA integ-
rity, the density and configuration of cristae membranes, and many 
other quantifiable metrics. Most omics platforms (such as proteomics, 
lipidomics, transcriptomics and genomics) target static features. As 
demonstrated in MitoCarta52, profiling mitochondrial features pro-
vides rich information on the molecular specialization of mitochondria 

(that is, the hardware). However, quantifying mitochondrial features 
does not reflect their functional capacity or behaviours in their cellular 
context. Static measures of mitochondrial morphology and ultras-
tructure, which include quantitative measures of size (volume) and 
morphological features (length, three-dimensional morphological 
complexity, cristae density, and so on86,95) also belong to the category 
of mitochondrial features.

Mitochondrial activities. Activities are single-enzyme activities that 
are measured as dynamic processes, such as the biochemical activity 
of monomeric (for example, CS) or multimeric (for example, pyruvate 
dehydrogenase complex) enzymes. Activities are made of features but 
do not classify as mitochondrial functions. Mitochondrial activities 

a  Morphological and ultrastructural diversity of mitochondria across mammalian tissues and cells

b  Mitochondrial subpopulations in mouse brain hippocampal neurons c  Mitochondrial subpopulations in mouse and human skeletal myofibre
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Fig. 3 | Diversity in mitochondrial morphology. a, TEM micrographs 
of mitochondria in mammalian tissues and cultured cells. The 143B-ρ0 
mitochondrion lacking mtDNA is from ref. 215. Adrenal mitochondrion 
reproduced with permission from ref. 216. Liver, pancreas, brown adipocyte 
and Leydig cell mitochondria reproduced with permission from ref. 73; other 
images are from M.P.’s laboratory). Note the natural variation in morphology 
(gross shape of mitochondria), in ultrastructure (positioning and organization 

of internal cristae membranes) and overall electron density (reflecting density of 
molecular components). b,c, Three-dimensional reconstructions (b) of neural 
mitochondria from the subcellular compartments of large granule neurons 
in the mouse dentate gyrus (adapted from ref. 85), and of skeletal muscle (c) 
mitochondrial phenotypes between the SS and IMF regions of human skeletal 
muscle fibres (adapted from ref. 86). Note the variation in morphological 
complexity and volume within the mitochondrial population of the same cell.

Monzel et al. Nature Metabolism 2023

Each organ and cell type has a different mitotype / energy



STRESSORS

BIOLOGICAL EMBEDDING

Mitochondria as an interface 
between the energetic states 

of mind, and the material 
state of molecules

Picard and McEwen. Psychosom Med 2018
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Hypothesis: Mitochondria are the ENERGETIC INTERFACE
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Mouse models of mitochondrial dysfunction. Mice with normal mitochondria are compared to mice with mtDNA mutations in genes encoding 
ND6 (NADH dehydrogenase subunit 6) and COI (cytochrome c oxidase subunit 1), decreasing electron transport chain and respiratory capacity. 
ANT1-/- (adenine nucleotide translocator 1) animals have impaired ATP/ADP transport across the inner mitochondrial membrane, and NNT-/- 
(nicotinamide nucleotide transhydrogenase) animals are deficient in a major intra-mitochondrial antioxidant system. 
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= 8-9, two-way ANOVA, Holm-Sidak’s vs WT, * P < 0.01, ** P < 0.01, *** P < 0.001). (B) Plasma levels of corticosterone and ACTH after 60 
minutes restraint stress. Note that NNT animals have the lowest CORT levels with the highest ACTH (n = 7-10, one-way ANOVA P < 0.001 and 
0.02, Holm-Sidak’s vs WT, * P < 0.05). (C) Ratio CORT/ACTH at 60 minutes (n = 7-10, one-way ANOVA P < 0.001, Holm-Sidak’s vs WT, * P < 
0.05). Data are means ± S.E.M. 
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“Boosting” energy metabolism 
rescues high-anxious deficit

Hollis et al. PNAS 2015

that, unlike infusion of muscimol in the BLA (SI Appendix,
Fig. S2) that interferes with BLA-dependent auditory fear con-
ditioning, microinfusion of 3NP did not affect conditioning in
this task (SI Appendix, Fig. S2), discarding that neuronal in-
activation could be a general mechanism whereby impairing
mitochondrial function would affect putative functions from the
affected brain region. Altogether, these data strongly support a
key role for complex I- and II-dependent mitochondrial function
within the NAc in the establishment of social dominance.
We then investigated whether we could reverse the disad-

vantage exhibited by high-anxious animals in the acquisition
of social dominance by boosting NAc mitochondrial function.
Nicotinamide adenine dinucleotide (NAD+) is a metabolic co-
factor present in cells that has been implicated in a wide range of
critical metabolic activities (28). Treatment with the NAD+

precursor nicotinamide (NAM; ref. 28), an amide form of vita-
min B3 that boosts mitochondrial respiration (29), into the NAc
of high-anxious rats at a time point before the social encounter
and at a dose that increased accumbal mitochondrial respira-
tion (Fig. 5A), abolished the disadvantage of high-anxious animals
to become dominant against low-anxious animals (Fig. 5B). Note-
worthy, anxiety, sociability, social investigation and auto-grooming

remained unaffected by NAM-treatment (SI Appendix, Fig. S7 E and
F and Table S3). Finally, given the higher levels of the common ROS
product 4HNE observed in high-anxious rats, we investigated whether
treating these animals with the antioxidant Mitoquinone mesylate
(mitoQ; ref. 30) in the NAc might enhance their dominance. Infusion
of MitoQ at a time (3 h before testing) and dose (10 μM) that de-
creases accumbal 4HNE levels (Fig. 5C) had no effect on reversing
the disadvantage of high-anxious rats when competing with vehicle-
infused low-anxious rats (Fig. 5D). These observations suggest that
the impact of mitochondrial function in social competition described
here is not mediated by oxidative stress but is related to mitochondrial
respiratory capacity. Taken together, our results point to a causal link
between NAc mitochondrial function and social rank.

Discussion
In this study, we show that animals’ anxiety trait is predictive of
the outcome of a competitive social encounter and reveal critical
neurobiological mechanisms underlying individual differences in
the predisposition to win or lose a social competition. Our findings
establish a key role for mitochondrial function in the NAc in the
attainment of social dominance. Althoughmitochondrial involvement
has been demonstrated in different mental health conditions, in-
cluding anxiety disorders, stress and depression (10–12, 31, 32), our
findings go beyond and establish a role for mitochondrial function in
the regulation of individual differences in social behaviors under
normal, nonpathological conditions.
First, following evidence in humans linking interindividual dif-

ferences in anxiety with social status (7) and competitive self-con-
fidence under stress (8), we showed that high-anxious rats tend to
become subordinate when confronted with low-anxious rats. Im-
portantly, the anxiety phenotype was reliably established through
two validated tests for anxiety in rodents, and the pervasive impact
of anxiety on social competition was confirmed through repeated
social encounters (Fig. 1G). As the competing rats were matched
for age, size, gender, and social experience, our findings suggested a
role for intrinsic differences in neural mechanisms involved in social
competition between high- and low-anxious individuals.
In our search for key brain regions involved in social hierarchy

establishment, we obtained evidence for the involvement of the

Fig. 4. Inhibition of mitochondrial complexes I and II in nucleus accumbens
(NAc) decreased social dominance. Intra-NAc infusion of rotenone (ROT, n =
12 pairs), 3-nitropropionic acid (3-NP, n = 10 pairs), or malonic acid (MA, n =
12 pairs) reduced social dominance (A), without affecting locomotion in the
Open Field, n = 5–6 per group (B). Intra-BLA infusions of ROT, 3-NP, or MA
had no effect on social dominance, n = 6, 9, or 10 pairs, respectively (C), or
locomotion, n = 5 per group (D). Data are mean ± SEM (**P < 0.01, ***P <
0.001, Student’s t test or one-sample t test against chance level).

Fig. 3. High-anxious rats (HA) exhibit lower mitochondrial function that is specific to the nucleus accumbens (NAc). HA exhibit lower expression of complex I
and II protein levels in the NAc than low-anxious rats (LA), n = 5–12 per group (A), but no significant difference in mitochondrial number, n = 9 per group (B).
(C) HA display lower mitochondrial respiration in the NAc than LA, n = 6 per group. (D) These differences were also detected two months following anxiety
characterization, n = 8 per group. (E) Mitochondrial respiration in the basolateral amygdala (BLA) does not differ between groups, n = 11 per group. ATP-
levels in the NAc are lower in HA than LA, n = 9–10 per group (F), whereas ROS products are higher in HA, n = 5–6 per group (G). Synaptoneurosomes were
separated from glia (H), and then mitochondrial respiration was measured in three independent experiments. The mitochondrial respiration deficit of HA is
present in synaptoneurosomes (I) but not in glia-enriched fractions (J). Data are mean ± SEM. Respiration data are presented as estimated marginal means ±
SEM of oxygen flux per mg tissue (*P < 0.05; **P < 0.01, Linear Mixed Model).
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SI Appendix, Fig. S1 E–G), which is reflected by a social dominance
level below chance (50%, Fig. 1G). Importantly, the subordinate
character of high-anxious rats was not apparent from the onset of the
interaction, but developed throughout the social encounter, in-
dicating no lack of motivation to compete in these animals (Fig. 1H).
The low competitive success of high-anxious rats was also evident
during a subsequent encounter that took place 1 wk later (Fig. 1G),
emphasizing the pervasive impact of anxiety on social rank. To ex-
amine whether this anxiety-related difference in social competitive-
ness was related to “social anxiety,” we performed a follow-up study
of social preference and found that both high- and low-anxious rats
similarly exhibited a preference to explore a juvenile rat over an
inanimate object (Fig. 1I). Thus, the differences in social competi-
tiveness are not related to overall differences in social motivation or
sociability. Because self-confidence is affected by stress (8), we in-
vestigated whether differences in the stress response might explain
the low competitive success of high-anxious rats. We examined
corticosterone levels in high- and low-anxious rats under basal
conditions and following social competition. Although social
competition did significantly increase corticosterone compared
with baseline levels, there were no significant differences between
anxiety groups at either time point (SI Appendix, Fig. S1H).

The Nucleus Accumbens Is Critically Involved in the Establishment of a
Social Hierarchy. Several brain regions [e.g., the prefrontal cortex
(15), NAc (16), and the amygdala (17, 18)] have been involved in
the establishment of social hierarchies in rodents, with the ventral
striatum (including the NAc) being consistently highlighted in hu-
man imaging studies of social status (19, 20) and competition (21).
We confirmed the activation of the nucleus accumbens (along with
that of the prefrontal cortex and basolateral, but not central, nu-
cleus of the amygdala) following a social competition test, in both
low- and high-anxious naïve animals by comparing the expression of
the immediate early transcription factor gene zif-268 mRNA fol-
lowing the encounter to basal conditions (Fig. 1J). We next
aimed to test the causal involvement of the NAc and BLA in the

establishment of a dominant rank. For this purpose, we performed
independent experiments in which we pharmacologically inacti-
vated each of these brain areas through microinfusion of muscimol,
a GABAA receptor agonist, 30 min before social competition be-
tween two males matched for equivalent anxiety levels. Upon
muscimol infusion in the NAc, rats exhibited reduced social dom-
inance levels in a confrontation with another anxiety-matched male
that was infused with vehicle (Fig. 1K). Importantly, this treatment
did not induce changes in locomotor activity as evaluated in the
open field (SI Appendix, Fig. S1I). On the contrary, inactivation of
the basolateral amygdala (BLA) with muscimol had no impact on
the social hierarchy outcome (Fig. 1K). We validated the effec-
tiveness of our BLA treatment by demonstrating that it drastically
inhibited fear conditioning (SI Appendix, Fig. S2), confirming the
role of the BLA in this type of behavior (22). Given the prominent
role of the NAc in social competition, we performed an additional
experiment to gain insight into the cell types which show activation
in this nucleus following a competitive encounter. Double-labeling
of cFOS with markers for several neuronal types highlighted a
significant activation of substance P-containing cells [known to
represent medium spiny neurons (MSNs) containing the dopami-
nergic receptor D1 (23)] following social competition (Fig. 2 A and
B) that correlated with the amount of competitive behavior (Fig.
2C). However, no social challenge-induced significant activations
were observed for cholinergic cells, for cells containing enkephalin
[known to represent D2-containing MSNs (23)] or for cells con-
taining the S100 astrocytic marker (SI Appendix, Fig. S3 A–F).
Therefore, these data point to the involvement of accumbal D1-
containing MSNs in social competition.

High-Anxious Rats Exhibit Reduced Mitochondrial Function in the NAc.
As our findings pointed to a prominent role of the NAc in social
competition, we explored potential molecular pathways within the
NAc differing between high- and low-anxious rats. We started by
examining differential basal gene expression between high- and
low-anxious rats in the NAc using microarrays and gene set

Fig. 1. High anxiety predisposes for social submission. (A) Classification for anxiety-profiles was based on the elevated plus maze (EPM; HA, high-anxious; IA,
intermediate-anxious; LA, low-anxious). Time spent in the open arm of the EPM (B and C) and in the lit compartment of the light–dark test (D and E) was
lower for HA animals, n = 24 per group. When competing against an LA rat, HA rats display reduced offensive behavior (F) and show low social dominance
(G) emerging throughout time (H), n = 24 pairs. (I) Both HA and LA rats display similar levels of social preference. (J) Levels of zif268 were increased following
social competition in the nucleus accumbens (NAc), prefrontal cortex (PFC), and basolateral (BLA), but not central (CeA), amygdala in both groups, n = 10–20
per group. (K) Local inactivation with muscimol in the NAc, but not BLA, reduced social dominance, n = 11–13 pairs. Data are mean ± SEM (*P < 0.05,
**P < 0.01, ***P < 0.001, Student’s t test or one-sample t test against chance, 50%, level).
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Mito inhibition decreases social 
dominance
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Similarity in mito features based 
on regional activities

My understanding was that the PCA was a first way in which Manish tried to cluster brain regions. Then he went the 
other way using multi-sclice? If so, we could present the results from the multi-slice, and say using PCA achieved 
similar results and say that PCA resulted in similar conclusions (and have a supplemental figure if Manish wants).
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MitoBrainMap v1.0 
A multi-function mitochondrial atlas of a single  
human coronal brain section at fMRI resolution



Eugene Mosharov

MitoBrainMap v1.0 
A multi-function mitochondrial atlas of a single  
human coronal brain section at fMRI resolution



Physical voxelization 
of the human brain 
at fMRI resolution
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Mitochondrial Respiratory Capacity 
(MRC)

0.7 1.4z score



Trumpff et al. PNAS 2024

Total=100

18%

25% in cognitively 
intact individuals

Variance (r2) in 
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DLPFC

Glia mitochondria contribute most of the signal



Cynthia Liu

500 ROSMAP brains 
9 brain regions + 1 muscle 

Data by end of 2025
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Mitochondrial Stress, Brain Imaging, and Epigenetics — MiSBIE
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Figure 1

Total N = 110

• Healthy controls         (n = 70)  
• mtDNA defects  

   3243A>G (group A)  (n = 20) 
   3243A>G (group B)  (n = 5) 
   Single deletion         (n = 15)    
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Psychobiology
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How does the brain know that, somewhere in the 
body, energy is consumed unsustainably ?



Nociception

Interoception

Immunoception (Neuron 2022)



Metaboception
The brain’s bidirectional monitoring and 

control of energy metabolism 

Liu et al. (under review)



Metaboception: sensing “energetic pain”
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potentials
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CONSERVATION 
e.g., Hand withdrawal

MOBILIZATION 
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social withdrawal

Liu et al. (under review)



GDF
15

Blood

Tissue injury 

Toxins 

Mitochondrial OxPhos 
defects 

Cellular differentiation 

Cellular 
hyperproliferation  
(cancer, immune) 

Senescence 

Pregnancy
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GDF15 expression and signaling on the brain
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Costly cellular processes: 

• Gene expression 

• Protein synthesis 

• Secretion 

• Antioxidant defense 

• DNA repair 

Increased energy demand beyond what is  
sustainable by cellular energy transformation capacity

?

Saliva

Other cytokines, produced by non-immune tissues, 
released in response to energetic stress

Liu et al. (under review)



Liu, Huang, Trumpff et al. (under review)GDF15: Growth differentiation factor 15
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GDF15 across the adult lifespan 
“Aging biomarker”

Cefis et al. Cell Rep Med 2025



Liu et al. (under review)

Psychosocial stressors 
• ↑ heart rate (E)

• ↑ blood pressure (E) 

• ↑ cortisol (E)

• ↑ sweating (E)

• ↑ brain activity (E)

• ↓ digestive activity 

• ↑ blood lactate

•Change in GDF15 ?
Psychosocial processes influence 
gene expression (Cole, Slavich)



Huang et al. BioRxiv 2024 
Liu et al. (under review)iSBIE
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Acute mental stress acutely increases GDF15
Huang et al. BioRxiv 2024 

Liu et al. (under review)iSBIE
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REPLICATION 
Mitochondria and Psychological Stress (MaPS)



What does GDF15 mean to the organism?
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What does Cortisol mean to the organism?



What does GDF15 mean to the organism?



What does GDF15 mean to the organism?

What does it feel like to have high GDF15  
in your blood ?



GDF15 is associated with …
• Loneliness and social isolation (Nat Hum Behav 2025)

• Psychiatric diagnoses (depression, substance abuse)

• Anxiety (Nat Metab 2025)

• All-cause mortality

• Not liking to take stairs, or don’t like walking for pleasure

• Fatigue

• Pain

• Other traits consistent with sickness behavior

https://proteome-phenome-atlas.com
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Could changing the fuel we feel brain 
mitochondria change experiences ?



Could changing the fuel we feel brain 
mitochondria change experiences ?

The ketogenic diet has been used for 30 years  
to treat epilepsy



https://www.youtube.com/watch?v=NLOVxz-2jeM
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