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Memory

° Memory IS nNot a Single entrty but Part 1: Four Different Types of Memory

rather a complex system with
different forms, including sensory -

memory, short-term memory (and
working memory), and long-term
m e m O ry. LO n g-te r m m e m O ry C a n be i | ‘,3-'] _n‘f’"“’\»‘ PROCEDURAL MEMORY @l EMOTIONAL MEMORY

further cate gorize d into ex o licit [ s ;. o —_

1
knowledge and facts. memory of an event how to perform a the emotions you felt
r experience - including common task without during an experience.

h t,

(deC|arative: ) and impliCit (non_ rhs[:élvshévllea actively thinking about it.
declarative) forms, with explicit
memory including episodic and S

ehavioral Medicine

* semantic memory.



https://www.google.com/search?sca_esv=eddf0e6cf9a8b4b3&q=episodic&sa=X&ved=2ahUKEwirwL7csdOMAxU_I0QIHXwDHRkQxccNegQIHhAB&mstk=AUtExfCOW75C53GxiY6fbqzEmN7y9bYi88giAHjvKKDG2d8qybkyjm9BeqtskFXzmHsiHM16O5iEX001oGbBk5zzwxOgX-1F2_mFcWnuPkT02lFdYwPPRzNqQo5OjBddvQptuRIqxVzfWW0B2UuiCWUn9Ph4nCAMfxBVhaLKHU48HbzsuoI&csui=3
https://www.google.com/search?sca_esv=eddf0e6cf9a8b4b3&q=semantic+memory&sa=X&ved=2ahUKEwirwL7csdOMAxU_I0QIHXwDHRkQxccNegQIHhAC&mstk=AUtExfCOW75C53GxiY6fbqzEmN7y9bYi88giAHjvKKDG2d8qybkyjm9BeqtskFXzmHsiHM16O5iEX001oGbBk5zzwxOgX-1F2_mFcWnuPkT02lFdYwPPRzNqQo5OjBddvQptuRIqxVzfWW0B2UuiCWUn9Ph4nCAMfxBVhaLKHU48HbzsuoI&csui=3

Episodic Memories: Pattern Separation and
Pattern Completion

Episodic memory is how we (a)(" Pattern separation ) (©)4
remember our lives.

To create accurate memories,

we must be able to both

distinguish similar experiences from
one another, a process called
pattern separation,

and recollect the multitude of
components of each life event

as a unified whole,

a process called pattern completion.
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Curiosity enables memory

* Novelty-seeking behavior, the tendency to seek out and engage with
new experiences, can significantly impact memory
development. Experiencing novel environments and stimuli can
enhance memory encoding, consolidation, and retrieval.

* Novelty Seeking behavior is a basic genetically determined
motivation, driven by Curiosity, analogous to thirst and hunger.

* In order to remember something, you have to have experienced it.

1 In order to experience something with enough intensity to
remember, you must be Curious.



Exploration of a large, complex novel environment

Home cage




The Hippocampal Network
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There are Excitatory pathways (glutamate)
But the hippocampus is
Known for inhibitory (6ABA) regulation

The Hippocampus is
primarily responsible for
memory formation and
retrieval, particularly for
long-term memories and
spatial navigation. It's
located in the temporal
lobe and is a key part of
the limbic system, a brain
region involved in
emotions, learning, and
memory.
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Adult Neurogenesis (2): Hippocampus
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Fate of neural stem cells in the adult hippocampus

- The vast majority of cells
born in the adult dentate
gyrus are excitatory,
granule cells

- In contrast to olfactory
bulb, where most of the
neurons are inhibitory
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Environmental Regulators of Adult Neurogenesis
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A cell type—specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior

Mehran Ahmadloul*t, Janou H. W. Houbal, Jacqueline F. M. van Vierbergen1, Maria Giannoulil, Geoffrey-Alexander Gimenezl1, Christiaan van
Weeghell, Maryam Darbanfouladil, Maryam Yasamin Shirazil, Julia Dziubek1t, Mejdy Kacem1, Fred de Winter2, J. Alexander Heimel1*

Exploring the physical and social environment is essential for understanding the
surrounding world. We do not know how novelty-seeking motivation initiates the
complex sequence of actions that make up investigatory behavior. We found in
mice that inhibitory neurons in the medial zona incerta (ZIm), a subthalamic brain
region, are essential for the decision to investigate an object or a conspecific. These
neurons receive excitatory input from the prelimbic cortex to signal the initiation of
exploration. This signal is modulated in the ZIm by the level of investigatory
motivation. Increased activity in the ZIm instigates deep investigative action by
inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm
neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.



Novelty Seeking behavior is a basic motivation
driven by Curiosity, analogous to thirst and hunger.

* The Hippocampus is not critical for novelty seeking behavior, or important
for curiosity

e But once you have performed novelty seeking behavior, how do you
determine whether something is novel or the same, or similar

* The Hippocamps and specifically is important for the determination of
novelty and similarity

* One cannot accurately determine novelty or similarity without novelty
seeking behavior and curiosity

* First exposure to a novel environment is induced by curiosity and
exploration and likely does not require DG

* The second exposure requires curiosity to explore and to determine
similarity or difference



Hypothesis and direction

* Once similarity or sameness is determined, curiosity is saited,
exploration decreases

* Are Dentate Granule neurons unique in their response to novelty?
* Do DG Neurons change in response to novelty?
 What is the molecular basis for Novelty Detection in the DG?

Dentate Granule Cells are ENGRAM CELLS

Cells active during memory encoding (exploration) are important for later recall
(engram cells).

Are there unique features of DG engram cells that might enable pattern
separation/novelty detection?



Single active DGCs can be isolated after a novel experience and show
a more dramatic transcriptional shift than other hippocampal cells
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Activity-induced transcriptional change occurs in DGCs despite
(or because of?) sparse activation

Activation by novel environment Shared vs. DG-unique activity-induced genes
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Categories of genes responding to activation in FOS+ DGCs

Activity-induced genes (up in FOS+)
Transcriptional regulation Transcriptional regulation

Poly(A) RNA binding Endoplasmic reticulum

Phosphoprotein Mitochondrion

Ubiquitin-dependent catabolic process Mitochondrial respiratory chain complex
Acetylation GTP binding

Potassium ion transport Extracellular exosome

Regulation of translation rRNA processing

Ubl conjugation pathway Dbl homology domain

Activation of MAPK activity Signal transduction

Positive regulation of ERK1 and ERK2 Ceramide biosynthetic process

Cortical actin cytoskeleton Ubl conjugation pathway

Glycoprotein




Scaled TPM

Active DGCs show an additional wave of transcription by 4-5hr
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Summary: Activity in Mature DGCs

 Single-nuclei RNA-Seq enables the study of transcription in rare, heterogeneous
DG engram cells whose activation encodes a memorable event

* DGCs respond to a novel environment with much greater transcriptional change
than hippocampal CA1 and VIP cells

* DGCs respond to activation with multiple waves of transcription, modulating
different at genes 1hr vs. 4-5hr— Longer?

-How do we determine if there are long term changes in DGC after activation?

- How do we determine if activated DGC can be reactivated ?




Long-term Cre-regulated tracking of engram neurons in DG
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DG engram cells representing a novel environment (NE) reactivate at much
higher than chance levels to that SAME environment up to 4 weeks later
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How is transcription in DG engram cells related to their function?

Are there lasting transcriptional changes in DG engram cells that enable them to
reactivate at high rates over a period of days to weeks?



Characterizing activity-related transcriptional change in DG engram cells

Collect DGC nuclei (PROX1+CTIP2+) for SmartSeq2
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Unbiased clustering identifies reactivated DG engram cells
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UMAP_2

Differentially expressed genes by cell state
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Penk has a FOS binding site near the promoter region
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Differential comparison summary

* Asingle recent activation of DGCS (FOS+ cluster 2 vs. baseline cluster 0) initiates a
strong transcriptional response, with hundreds of DE genes

* Reactivation is associated with a distinct transcriptional response compared to
the first activation (FOS+GFP+ cluster 1 vs. FOS+ cluster 2) - 40% reactivation

* Engram cells that responded to a 1%t exposure and were never given the
opportunity to activate again show differences in synaptic transmission and
neuropeptide-related genes- Some respond to the second exposure — PENK zbs

* We conducted further studies explore the role of these gene candidates in the
strikingly high reactivation rate among engram DGCs



Penk generates endogenous opioids called enkephalins, which

Molecular
Layer

Granule
Cell
Layer

Hilus

ACh GABA
NPY
SOM
=

tend to disinhibit DGCs

* Penk produces a preproprotein that is cleaved to form Met and Leu-enkephalins
* Enkephalins are stored in dense core vesicles, requiring more prolonged,
intense neuronal stimulation than release of glutamate/GABA

ENK/DYN
+

to CA3
.,

* Enkephalins bind to mu and delta opioid receptors (MORs and DORs)

/\ * MOR and DOR activation tends to increase DG excitability and facilitate LTP in
EQEC | the molecular layer- Inhibition of inhibitory cells cause increase in excitability
P due to Disinhibition

e c-FOS our indicator of Activation, binds to and activates Penk!
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Penk in the DG — activity-related or a DGC subtype?
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RNAscope validation: Penk is increased significantly in Gfp+ cells at 24hr
post-NE and only minimally at 1hr post-NE in Arc+ cells
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DG engram cells also reactivate at high rates to the same environment
using a complementary Cre-dependent viral labeling strategy
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Reactivated engram cells have higher Penk than non-reactivated cells

Penk by activation status
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Of opioid-related genes, only Penk shows substantial
expression in DGCs in snRNA-Seq data
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Log(TPM)
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Potential target of released enkephalins:
Delta opioid receptor (Oprd1) expression in DG and CA3 PV+ cells
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Opioid receptor expression is significantly higher in DG PV+ cells than in
surrounding granule cell layer and unchanged by NE
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Working model for Penk action: disinhibition of DGCs via PV basket cells
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Opioid-mediated plasticity in the hippocampus

CA2: Delta opioid receptor activation is critical for long-term
depression of inhibition after stimulation of Schaffer collaterals
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DG: Delta opioid receptors, via suppression of inhibition,
are critical for LTP induction in the lateral perforant path
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engram neurons

Patch clamp recordings reveal engram neurons are hyperactive vs. non-
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Timeline of opioid-related disinhibition of DGCs via PV basket cells?

| 1st NE exposure: | Replay events during

consolidation period:

®

4 Disinhibition

of DGCs 3. Reduced
~6-24hr: @ GABA release

Increased Penk :

o @ 2.DOR activation

> ~ of Giproteins on

PV+ interneurons

DGC activated QNL”CT@SW\J

by NE release

by DGCs

2nd NE exposure:

24hr-4 weeks

>

DGC highly likely to
reactivate to same NE



1. How selective are the Engram cells as the difference between the
first exposure and second become more different?

2. How does exercise and increased adult neurogenesis influence the selectivity of
the DG engram cells??



1. Varying environments to test the selectivity of DG engram

cells
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1. Highly-reactivating DG engram cells are still context-specific:
reactivation in a second NE depends on level of similarity to the first
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1.Mice habituate when re-exposed to the same or a highly
similar NE but continue to explore more when the NE is
sufficiently novel
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2. Running alters exploratory behavior in a high similarity NE
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Running enhances DG neurogenesis and causes more selective DGC
reactivation to a similar environment

Enhanced neurogenesis:
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FosCreERT2 x
LSL-sfGFP mice

.
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Running-induced change in exploration of a high similarity NE
is correlated with DGC reactivation
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Interim summary

* DGCs reactivate selectively, responding with greater reactivation to
more similar environments

* Running alters exploration of similar environments: runners can
distinguish environments that controls interpret as the same

* Running also alters the |IEG response in DGCs:
* Fewer DGCs reactivate to a similar environment in running mice

* Paradoxically the total IEG activity is reduced in runners when exploring a
similar environment



Model for DG engram cell circuitry

DGC likely to reactivate
to highly similar NE

1st NE exposure: Replay events during
consolidation period:

4.Disinhibition

of DGCs 3. Reduced r C!
~6-24hr: @ GABA release
Increased Penk 4 — Immature DGCs recruit more

2. DOR activation inhibition, reducing reactivation

.
> of Gi proteins on
PV+ interneurons
by NE release

by DGCs




General Summary and Speculations

Novelty Seeking Behavior, driven by Curiosity, leads to c-fos
expression, which enhances Penk expression, in selected DG neurons

* Episodic, Pattern Separation, Memory, occurs in the hippocampus

* Dentate Granular neurons are engram cells that encode memory

 PENK 1s activated in Engram cells and leads to enhanced reactivity
to similar experiences (memory)

* Exercise and increased adult neurogenesis lead to better memory
with less effort/energy expenditure! (On Going)
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Unbiased clustering identifies reactivated DG engram cells

Cluster
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