

Introduction

- therapeutic potential for psychiatric conditions
 - and neural effects¹
- with conscious error awareness³

Electrophysiological Measures of Error Processing Following Low-Dose LSD Administration

Kenneth Wang¹, Harriet de Wit, PhD², James Glazer, PhD³, Robin Nusslock, PhD³, Connor Murray, PhD⁴, Hanna Molla, PhD², Royce Lee, MD² ¹Pritzker School of Medicine, ²Department of Psychiatry & Behavioral Neuroscience, The University of Chicago, Chicago, IL ³Department of Psychology, Northwestern University, Evanston, IL; ⁴Department of Psychiatry, UCLA, Los Angeles, CA

Results

Category	n or Mean ± SD (range)
Participants (Male/Female)	18 (12/6)
Age, Years	24.5 ± 4 (19-30)
Education, Years	15.3 ± 1.5 (14–18)
Body mass index, kg/m ²	22.4 ± 2.9 (18-28.2)
Race	
Caucasian	15
African American	1
Asian	2
Drug dose administration order	
Placebo, LSD-13, LSD-26	4
Placebo, LSD-26, LSD-13	5
LSD-13, Placebo, LSD-26	3
LSD-13, LSD-26, Placebo	2
LSD-26, Placebo, LSD-13	2
LSD-26, LSD-13, Placebo	2

Drug

- First study of a psychedelic drug and error-monitoring ERPs
- Low doses of LSD have no significant effect on ERN-like ERP
- Low doses of LSD attenuate Pe-like difference wave amplitude "correct" and "incorrect"

Cue

- Punishment Cues

Outcome

- ERN-like amplitudes were similar across Hit and Miss Outcomes
- Pe-like amplitudes were greater for Hit (vs. Miss) Outcomes early responses. Pe is associated with post-error slowing⁴
- than LSD-13 and LSD-26

- eMID task: lacks a discriminatory component
- Small sample size (17 participants)

- Neuropsychopharmacol. 2023;48:418–426.
- Negativity. Psychological Review. 2004;111:931–959.
- European Journal of Neuroscience. 2009;29:1522–1532.
- error compensatory behavior. Psychophysiology. 2003;40:895–903.

Acknowledgements

- Soren Lee
- Bucksbaum-Siegler Institute for Clinical Excellence
- University of Chicago Pritzker School of Medicine Summer Research Program

Demographics

Conclusions

• LSD (and thus serotonin agonism) may reduce ability to distinguish between

• ERN-like amplitude for Neutral Cues was significantly smaller than for both Reward and

• Supports previous evidence that ERN is increased by more salient stimuli. Suggests ERN-like ERP may serve as correlate for motivational salience

• eMID lacks a discriminatory aspect and emphasis on reaction time

• Opposite from expected effect; possibly due to the carefulness required to suppress

• Outcome x Drug interaction: For Hit Outcome, Pe-like amplitudes greater for Placebo

• LSD reduces Pe-like for Hit only (vs. Miss); Hit is more like a traditional "error"

Limitations

• Cannot conclude that higher doses of LSD would not modulate the ERN and Pe

References

Glazer et al. Low doses of lysergic acid diethylamide (LSD) increase reward-related brain activity.

2. Yeung et al. The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related

3. Shalgi et al. On the positive side of error processing: error-awareness positivity revisited.

4. Hajcak et al. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-