UNIVERSITY oF IOWA

Background

Hypothesis: PS will lead to:

1. Changes in striatal gene expression, especially in the domain of synapse
function.

2. Striatal-dependent behavioral deficits, including in procedural learning and

interval timing.

Altered physiological activity of MSNs during interval timing.

* Prenatal stress (PS) is linked to
increased risk for neuropsychiatric
disorders in offspring, including
autism spectrum disorder (ASD)*

* Many with ASD show enlargement
and hyperconnectivity of the dorsal
striatum?

* Medium spiny neurons (MSNs) are
the principal neurons of the
striatum, with Drd1 & Drd2 subtypes

* Drd2 antagonism can ameliorate
some ASD-like behaviors in mouse
models*

* Pharmacological manipulation of
MSNs during interval timing results
in delayed response times and
altered time-related neural activity>

N

D |y

Stress: E12 - Birth

Offspring Outcomes:

Interneuron

\ |
G
=
( 77
‘

% \ Drd1 MSN

Methods

Standard Rearing &
Weaning

Striatal Cell Types

-

Astrocyte

Microglia

Drd2 MSN

Mature
_— Oligodendrocyte

GPi

The effects of prenatal stress on distinct dorsal striatal cell types and

autism spectrum disorder-relevant behaviors in mice
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8 — 17-week-old

Behavior: Open field, Rotarod, and interval timing

offspring

Single-cell RNA sequencing (scRNAseq): Dorsal striatum

Recording: Multielectrode array recordings from the

Results: scRNAseq

dorsomedial striatum during interval timing

Cell Clustering

Prenatal stress (PS): 45-min sessions of restraint & bright
light, 3x daily, from embryonic day 12 through birth in CD-1
mice.

n =4 CTL males; 4 PS males
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Canonical Pathway

Pathway Enrichment Analysis

Eukaryotic Translation Initiation
Eukaryotic Translation Elongation

Response of EIF2AK4 (GCN2) to amino acid deficiency
SRP-dependent cotranslational protein targeting to membrane

Eukaryotic Translation Termination
Selenoamino acid metabolism

Major pathway of rRNA processing in the nucleolus and cytosol

Nonsense-Mediated Decay (NMD)
EIF2 Signaling

Glutaminergic Receptor Signaling Pathway (Enhanced)

Calcium Signaling
Pancreatic Secretion Signaling Pathway

Cardiac Hypertrophy Signaling (Enhanced)

RHO GTPase cycle

Acetylcholine Receptor Signaling Pathway
Regulation of RUNX2 expression and activity

Docosahexaenoic Acid (DHA) Signaling
Microautophagy Signaling Pathway
PTEN Regulation

Synaptic Long Term Depression
Regulation of mitotic cell cycle
Signaling by NOTCH4

Cardiac conduction
NIK-->noncanonical NF-kB signaling
Metabolism of polyamines
Coronavirus Pathogenesis Pathway
Transcriptional regulation by RUNX3
Synaptogenesis Signaling Pathway

Ribonucleotide Reductase Signaling Pathway

TNFR2 non-canonical NF-kB pathway
Regulation of Apoptosis

Fc epsilon receptor (FCERI) signaling
ABC-family proteins mediated transport
Gustation Pathway

TCR signaling

Netrin Signaling

Molecular Mechanisms of Cancer
Hedgehog ligand biogenesis

DNA Replication Pre-Initiation
Interleukin-1 family signaling
Mitochondrial translation

Dopamine-DARPP32 Feedback in cAMP Signaling

Signaling by the B Cell Receptor (BCR)
Synthesis of DNA

Electron transport, ATP synthesis, and heat production by uncoupling proteins

lon channel transport

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells

C-type lectin receptors (CLRs)
White Adipose Tissue Browning Pathway
Signaling by Rho Family GTPases

KEY: Common
Pathway Themes
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ASD-associated genes from the
SFARI Gene database were highly

overrepresented among genes

that were differentially expressed
after PS in Drd1 and Drd2 MSNSs.

Pathway enrichment analysis was

run on the overlapping genes

using both DAVID and PANTHER,

revealing synaptic-related
pathways.
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IPA comparison analysis was performed on the cell types with significant pathway
enrichment analysis results, showing consistent changes across cell types.
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Results: Recording
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Multielectrode arrays were
implanted in the
dorsomedial striatum of
mice previously trained on
the interval timing task (n =
4 CTL; 4 PS). Recordings
were taken during interval
timing behavior. MSNs were
identified and characterized
in further analyses (n = 80
CTL neurons; 76 PS
neurons).
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< Some MSNs display timing-related ramping
activity over the first 6 seconds of the trial.
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In PS, a higher percentage of MSNs display timing-related ramping activity.
MSNs also display greater changes in firing rates in PS —i.e. faster ramping.

Conclusions

Prenatal stress led to:

1 Transcriptional changes that were consistent across distinct

striatal cell types

* Synaptic- related pathways were enriched among

upregulated DEGs

* Translation- related pathways were enriched among
downregulated DEGs

* Significant overrepresentation of ASD-associated genes
among DEGs in Drd1 and Drd2 MSNs

2 Enhanced procedural learning on Rotarod and earlier switch
times in the interval timing task

3 Changes in striatal MSN physiology (more ramping neurons
and faster ramping) that may contribute to earlier switch

times

* May reflect possible 1 in glutamatergic input from cortex
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