Background and Rationale

- Stereotypies (repetitive, unvarying, and seemingly goal-less behaviors) are cardinal to several neuropsychiatric and neurodevelopmental disorders and are associated with distressing affective states.
- Spontaneous stereotypy in animals is a well-validated model for human stereotypy including shared pathophysiology of the pre-motor corticostriatal loop and behavioral deficits.
- Despite extensive literature examining stereotypy, the underlying developmental pathophysiology is unknown.
- Compulsive behaviors, which involve dysfunction of an adjacent corticostriatal loop, are strongly correlated with REDOX imbalance (oxidative stress), and symptom severity is reduced via corticostriatal loop.

Does GSH predict severity of stereotypy?

| GSH predicts severity of stereotypy, but relationship diminishes with age. |

Is there a more specific and sensitive proteomic biomarker profile?

Proteomic hits are validated by association with disorders characterized by stereotypy.

- Plasma-based total GSH is predictive of severity of stereotypy, but the predictive nature diminishes with age.
- The relationship between GSH and stereotypy in mice parallels the relationship between GSH and compulsive behaviors in mice and humans.
- Proteomic hits tightly correlate with dopamine, REDOX processes, and disorders characterized by stereotypy.
- Together, these results support a REDOX imbalance developmental pathophysiology for stereotypy.

Future Directions:

1. Translate findings to other species (e.g., primates and humans).
2. Determine if antioxidant therapies are effective for stereotypy as they are for compulsive behaviors.

References:

Proteomic insights into the developmental pathophysiology of stereotypy.

Kendall M. Coden1,2, Kaleigh J. Beacham3,4, Beatriz E. Stix-Brunell1, Roberta Moorhead1, Kyna A. Byrd1, Joanna N. Baker1, Jerome T. Geronimo1, Karen J. Parker2,3, Joseph P. Garner1,2

1) Department of Comparative Medicine, 2) Department of Psychiatry and Behavioral Science, Stanford University. 3) Neuroscience Graduate Program, University of Michigan. 4) Harvard Medical School, Harvard University.

Stanford Medicine