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Post-traumatic stress disorder (PTSD) is a severe psy-
chiatric disorder that develops in the months and years 
following exposure to severe trauma1. The characteristic 
symptoms of the disorder include re-experiencing of 
trauma memories, avoidance of cues that remind the indi-
vidual of the trauma, negative emotions and thoughts, and 
hyperarousal. PTSD has a prevalence of approximately 6% 
in the general population but can occur in 25–35% of indi-
viduals who have experienced severe trauma, for example, 
combat veterans, refugees and victims of assault2–5. The 
risk of developing PTSD after trauma is multi-factorial, 
and involves genes and the environment6–12. Although at 
least 30–40% of this risk is heritable13–18, it is also influ-
enced by past personal history, including prior adult and 
childhood trauma, and psychological factors that might 
differentially mediate the regulation of fear and emotion.

Two of the more well-known factors that influence 
the risk of PTSD are the type of trauma and the sex 
of the individual. Although some studies suggest that 
the symptoms and biological mechanisms of PTSD are 
similar across different types of trauma and different 
degrees of exposure19–21, some clear differences have 
been reported. Notably, among the various types of 
trauma, childhood trauma and interpersonal assault and 
violence seem to carry the greatest risk of subsequent 
development of PTSD22,23. Furthermore, biological find-
ings suggest that military and civilian trauma exposures 
might involve different mechanisms and have different 
biomarkers of PTSD risk24. However, teasing apart the 
influence of trauma type from that of other components 
that often make up cohort differences (for example, sex, 
age, premorbid functioning, social support and other 
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risk or resilience factors) remains difficult. One of the 
most important findings related to the risk of PTSD is 
the approximately 2:1 ratio of increased PTSD preva-
lence in women compared with men25,26. This difference 
in risk is likely to be influenced by differences in the 
types of trauma experienced by individuals of different 
sexes27 as well as by differences in biology, for exam-
ple, the regulation of risk and resilience responses by 
sex hormones26.

Because the aetiology of PTSD stems from a spe-
cific, highly traumatizing, fear-evoking experience 
(often called the ‘index trauma’), it is considered a 
prototypical example of a psychiatric disorder that can 
be better understood by modelling the interaction of 
environmental influences with genetic vulnerability. 
In addition, considerable evidence supports a concep-
tual framework in which PTSD can be viewed, at least 
in part, as a disorder of fear dysregulation, which offers 
opportunities to advance the field through translational 
neuroscience approaches. The neural circuitry under-
lying fear behaviour in mammals, including the circuit 
that connects the amygdala, hippocampus and medial 
prefrontal cortex, is among the most well understood in 
neuroscience28–33. In addition, the study of fear-related 
and threat-related behaviour and its underlying circuitry 
has led to some of the most rapid advances in our under-
standing of learning and memory processes34–37. By com-
bining molecular–genetic approaches with a mechanistic 
understanding of fear circuitry, we believe great progress 
in the understanding, diagnosis, and treatment of PTSD 
is imminent.

In contrast to the promise and progress of current 
scientific approaches, treatment options for PTSD in 
the clinical setting remain limited38–40. The best cur-
rently available treatment for PTSD is exposure-based, 
trauma-focused cognitive behavioural therapy, which 
is thought to act via modulation of the neurocircuitry 
of fear extinction41. No psychotropic medications have 
been developed and approved specifically for PTSD. 
Instead, the only FDA-approved treatments for the dis-
order are two antidepressant medications: sertraline 
and paroxetine42. Considering that these medications 
often fail to address the full range of PTSD symptoms43, 

a better mechanistic understanding of the pathogene-
sis and biology underlying intermediate phenotypes  
of the condition is urgently needed in order to accel-
erate the identification of novel targets for improved 
treatments. In this Review, we first describe the clinical 
features of and current treatments for PTSD. We then go 
on to discuss neuroanatomical and molecular–genetic 
approaches to the study of PTSD and relate them to a 
translational understanding of fear circuitry, with the 
aim of exploring possible advances in the conceptual 
framework, diagnosis and treatment of PTSD.

Clinical features of PTSD
To meet the diagnostic criteria for PTSD outlined in the 
Diagnostic and Statistical Manual of Mental Disorders 
fifth edition (DSM-5)1, an individual must first have 
had a traumatic experience that involved being exposed 
to actual or threatened death, serious injury, or sex-
ual assault. Individuals who have symptoms of PTSD 
during the first month following trauma exposure are 
considered to have ‘acute stress disorder’ as, in many 
such individuals, the symptoms naturally resolve in the 
days and weeks following the initial shock and emo-
tional upheaval of the traumatic exposure. Individuals 
with symptoms of PTSD that are consistent for at least 
2 weeks and are ongoing at least 1 month after trauma 
exposure are considered to have a diagnosis of PTSD.

PTSD is characterized by four symptom clus-
ters: intrusion and re-experiencing; avoidance and 
numbing; negative mood and impaired cognition; 
and hyperarousal1. Intrusion and re-experiencing 
symptoms comprise DSM-5 criterion B and include 
unwanted intrusive memories ranging from mild 
unwanted memories to full dissociative flashbacks dur-
ing which the individual momentarily believes they are 
re-living the traumatic experience. This symptom clus-
ter also includes disturbing, and at times overwhelming, 
nightmares of the traumatic event. DSM-5 criterion C 
includes avoidance of any reminder cues, contexts or 
people related to the trauma, which can become a sub-
stantial source of disability as individuals become more 
isolated, often not leaving their home owing to the gener-
alization of triggering experiences. ‘Negative alterations 
in cognition and mood’ is a broad cluster of symp-
toms that comprises DSM-5 criterion D and includes 
trauma-related depressive-like symptoms, anhedo-
nia, emotional numbing and problems concentrating. 
Hyperarousal symptoms constitute DSM-5 criterion E 
and include decreased sleep, increased startle response, 
hypervigilance and irritability, as well as aggressive and 
arousal-related self-destructive behaviour.

In 2013, a new dissociative subtype of PTSD was 
added to DSM-5 with the aim of improving the charac-
terization of individuals with PTSD who also experience 
pervasive dissociative symptoms1. To meet criteria for 
the dissociative subtype, an individual must meet full 
criteria for PTSD while also experiencing substantial 
symptoms of depersonalization and/or de-realization. 
The DSM-5 defines depersonalization as “experiences of 
unreality, detachment, or being an outside observer with 
respect to one’s thoughts, feelings, sensations, body, or 
actions” and de-realization as “experiences of unreality 

Key points

•	Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder, 
characterized by re-experiencing, avoidance, negative emotions and thoughts, 	
and hyperarousal.

•	PTSD is frequently comorbid with neurological conditions such as traumatic brain 
injury, post-traumatic epilepsy and chronic headaches.

•	PTSD has a prevalence of approximately 6–8% in the general population and up to 
25% among individuals who have experienced severe trauma.

•	Many of the neural circuit mechanisms that underlie the PTSD symptoms of 
fear-related and threat-related behaviour, hyperarousal and sleep dysregulation 	
are becoming increasingly clear.

•	Key brain regions involved in PTSD include the amygdala–hippocampus–prefrontal 
cortex circuit, which is among the most well-understood networks in behavioural 
neuroscience.

•	Combining molecular–genetic approaches with a mechanistic knowledge of fear 
circuitry will enable transformational advances in the conceptual framework, 
diagnosis and treatment of PTSD.

Startle response
A reflex that occurs rapidly  
and unconsciously in response 
to an external stimulus such as 
a noise burst.

Hypervigilance
A core feature of post-traumatic 
stress disorder (PTSD) 
characterized by a heightened 
state of active threat 
assessment.
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or detachment with respect to surroundings”1. This 
dissociative subtype was added in recognition that a sub-
set of individuals with PTSD and dissociative symptoms 
can be reliably identified in both military and civilian 
samples44. Neurobiological and clinical research in PTSD 
also supports the existence of a dissociative subtype45,46, 
as further outlined below.

Studying PTSD: reasons for optimism
Often, PTSD is viewed as a psychiatric syndrome that 
could be particularly tractable. Several reasons exist to 
support this optimistic view. First, there is a high level of 
intersection between the clinical symptoms of PTSD and 
our existing knowledge of the underlying neurocircuitry 
(Box 1). Moreover, threat-related behaviours and their 
underlying neural circuitry are highly conserved across 
mammals, including from mice to humans12,36,37. Decades 
of work investigating the neurobiology of fear and threat 
behaviours in animal models can thus be leveraged to 
advance our understanding of the dysregulation of 
these systems in individuals with PTSD. Second, PTSD 
is among the few psychiatric syndromes for which the 
timing and cause of onset (that is, the aetiology) of the 
illness — exposure to the index trauma — is understood. 
Although much of the research into PTSD focuses on 
identifying why some people who are exposed to trauma 
go on to develop the disorder and others are resilient, in 
all cases, trauma exposure is required for PTSD devel-
opment. Indeed, much of the work on trauma exposure 
has provided new insights into mechanisms of resilience. 
Studies have shown that resilience can be genetically 
heritable and that common polymorphisms contribute 
to resilience after trauma exposure47,48. Furthermore, 
studies in at-risk populations have examined different 
psychological coping styles and brain activity patterns 

that support resilience as well as the effects of resilience 
in buffering against substance use disorders and other 
negative sequelae of trauma exposure49–52.

Thus, we can study the onset of PTSD in the immedi-
ate and prolonged aftermath of trauma in ways that are 
not possible for other neuropsychiatric disorders, raising 
the potential for primary and secondary prevention of 
PTSD development based on knowledge of the processes 
of trauma memory formation, sensitization and general-
ization over time. The mechanisms of trauma memory 
encoding and consolidation as well as those of extinc-
tion memory formation, discrimination versus general-
ization of fear, and other emotional memory processes 
(for example, reconsolidation), all rely upon synaptic 
plasticity and systems memory processing. Ongoing 
research into biomarkers, including those that could be 
detected in the blood or other tissue samples, is bringing 
the field closer to the possibility of meaningful PTSD 
prevention53–55. Furthermore, numerous translational 
studies have identified biological systems and molecular 
pathways that could be targeted to buffer trauma mem-
ory consolidation in the Emergency Department or the 
battlefield; pilot prevention studies have been performed 
but none have yet been definitive56–60. The field of neuro-
science has made tremendous progress towards under-
standing mechanisms of fear memory formation and 
regulation over the last decades; this progress has direct 
implications for our understanding of trauma memories 
and avenues for therapeutic intervention in PTSD.

Classical conditioning in PTSD
The neurobiology of Pavlovian threat memory acqui-
sition is well characterized28,37,61,62. This process is 
particularly relevant for understanding PTSD as 
the PTSD-inducing trauma exposure is frequently 

Box 1 | Improving alignment of psychiatry and neuroscience

Rapid advances in technology are changing the ways in which illnesses 
such as post-traumatic stress disorder (PTSD) are diagnosed, treated 	
and studied. In humans, these advances consist of continued refinements 
in brain imaging, increasing use of smart devices and wearables, and 
dramatic advances in the efficiency of genetic analyses. In animal models, 
a corresponding evolution of precision molecular techniques to probe and 	
dissect neural circuitry is ongoing. Despite these advances, psychiatry 	
and basic neuroscience continue to evolve largely in parallel, with few 
examples of the fields aligning and integrating to produce transformative 
changes in human health223. Although many factors contribute to these 
gaps, most are related to a lack of forward (animal to human) and back 
translation (human to animal) of key discoveries, leading to questions 
about the utility of model systems in drug development224,225.

Paths forward
Key attributes for experimental approaches that will enable 
transformational advances in research on PTSD and other psychiatric 
illnesses:

•	Translational relevance: the use of similar or identical end points 	
in humans and laboratory animals.

•	Continuous data collection: end points that are measured over long 
periods (hours, days or weeks).

•	Objectiveness: data collected and analysed using rigorous algorithms, 
involving minimal handling or visual scoring.

Together, the above attributes make experimental findings more robust, 
reproducible and predictive of effects in other species225,226. Many tools 

for the collection of data that have these key attributes are now available 
and include digital devices, such as smartphones and activity trackers, 	
for use in humans and machine learning-based behavioural analysis in 
animals55,157,226,227.

Translationally aligned end points
The following are representative examples of end points that fulfil the 
three key attributes above and are dysregulated in PTSD and by stress 
exposure in animal models:

•	Behavioural
-- Acoustic startle7,29,119,120

-- Sleep11,99,100,108,111,114

-- Diurnal fluctuations in motor activity rhythms111,227,228

-- Diurnal fluctuations in core body temperature rhythms111,227–229

-- Attention230–232

-- Cognitive control233–235

-- Reward learning236,237

•	Biomarkers
-- Blood based54,141,166,167,238

-- Peripheral samples and biopsies123,157,239

-- Post-mortem analyses140,141,240

Note that some techniques, such as brain imaging, fulfil the three key 
attributes but often involve substantial procedural deviations (for example, 
restraint or anaesthetic) or fundamental differences in capabilities 	
(for example, ability to understand instructions, guidance or reassurance) 
across species.
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considered to be an example of human naturalistic fear 
conditioning. In experimental paradigms for assess-
ing threat memory, a neutral stimulus (for example,  
a light, tone or smell) is presented repeatedly in tandem 
with an aversive stimulus (unconditioned stimulus; for 
example, a shock). After these repeated combined pres-
entations, the individual (person or laboratory animal) 
learns that the previously neutral stimulus predicts the 
aversive unconditioned stimulus, transforming it into 
a conditioned stimulus. Consequently, the individual 
will exhibit fear-related behaviour in response to the 
conditioned stimulus, regardless of whether or not it is 
accompanied by the aversive unconditioned stimulus. 
Evidence from neuroimaging, lesion and pharmacology 
studies across species suggests that information about 
the conditioned stimulus and the unconditioned stimu-
lus converge at the lateral and basolateral amygdala via 
afferents from the thalamus and cortex28,63,64. Pairings of 
the conditioned stimulus and unconditioned stimulus 

induce synaptic plasticity at the level of the basolateral 
amygdala65. Subsequent activation of the central amyg-
dala, via input from the basolateral amygdala, elicits 
conditioned stimulus-elicited fear responses, including 
freezing, increased heart rate and potentiated startle, by 
activating downstream brain areas like the hypothalamus,  
locus coeruleus and other brainstem nuclei28,29.

By contrast, extinction learning — during which fear 
is diminished through the process of exposure to the  
fear-eliciting conditioned stimulus in the absence of  
the aversive unconditioned stimulus — is conceptualized  
as a process that involves new learning that occurs 
through multiple mechanisms and suppresses, rather than 
erases, existing aversive memories61,66. Dynamic changes 
in molecular mechanisms controlling GABAergic 
activity have been observed during fear acquisition  
and extinction learning in rodents (laboratory rats, 
mice); the observed changes suggest that an increase 
in amygdala GABAergic transmission has a role in 
extinction67. Furthermore, in vivo electrophysiology 
studies identified a subset of excitatory projection neu-
rons in the basolateral amygdala that exhibit increased 
firing rates during extinction68,69. Note that modern 
genetic approaches to understanding the neural circuits 
of behaviour in animal models, including optogenetic, 
chemogenetic and cell type-specific manipulations 
(Box 2), are revolutionizing our mechanistic under-
standing of circuits and behaviours. Using these tools, 
researchers have identified ‘extinction neurons’ that are 
responsive to the conditioned stimulus during extinc-
tion trials but not during fear conditioning, and seem 
to actively suppress the prior fear memory when in a 
context associated with safety70,71. Additionally, in a study 
in rats, infralimbic cortical neurons exhibited increased 
conditioned stimulus-elicited firing during extinction 
retention and recall compared with baseline, suggest-
ing that activity of the infralimbic cortex is crucial for 
inhibition of fear33. Reminders (or retraining) were able 
to restore the original threat response more quickly 
than the original training regimen, suggesting that the 
memories were suppressed as opposed to erased.

Overall, studies performed in rodent model systems 
and humans since the 1980s and 1990s have repeatedly 
indicated that Pavlovian threat conditioning occurs in 
part via amygdala circuits that activate downstream 
‘reflexive’ threat responses. These systems seem to go 
awry, either through ‘over-learning’ at the time and in the  
aftermath of the initial trauma exposure, or through  
the inability to normally recover (via extinction) healthy 
safety learning following trauma. Studies in the labora-
tory setting have shown that individuals with PTSD 
have increased fear conditioning, deficits in extinction, 
and increased physiological (for example, sympathetic 
responses measured with galvanic skin response)6,7,72 
and brain correlates of fear-responding (for example, 
amygdala and anterior cingulate hyperarousal) when 
compared with healthy control participants73 (Box 1).

Neuroanatomy of PTSD
The brain regions most consistently associated with 
PTSD include the amygdala complex, hippocampus, 
insular cortex and areas of the prefrontal cortex, including 

Box 2 | experimental tools for dissection of threat circuits in animal models

optogenetics
Optogenetics enables spatiotemporally precise optical control of specific neuronal 
populations241. To manipulate neuronal firing, the light-sensitive protein channelrhodopsin 2 	
(ChR2) is expressed in targeted, neurochemically and functionally identifiable neurons 
using viral delivery systems or genetic interventions and then activated by light delivered 
at standardized frequencies through an implanted optical fibre. ChR2 is a non-selective 
cation-permeable ion channel activated by blue light, resulting in membrane 
depolarization and the triggering of spike firing. Neurons can also be silenced with the 
light-sensitive inhibitory chloride pump halorhodopsin126,242 or firing can be inhibited by 
archaerhodopsin, a proton pump activated by yellow light243–245. The use of viral vectors 
that transfect neighbouring neurons in anterograde-preferring or retrograde-preferring 
directions can achieve projection-specific targeting of these light-sensitive proteins, 
enabling the manipulation of behaviour-controlling pathways245. The addition of 
Cre-recombinase-dependent expression of genes in specific cell types further 
enhances the specificity of circuit-level activity manipulations246.

Chemogenetics
Although optogenetics is commonly used for temporally precise manipulations, 
chemogenetics enables the control of naturally occurring neuronal firing patterns over 
extended periods of time247. Chemogenetics uses the expression of DREADDs (designer 
receptors exclusively activated by designer drugs)248,249 in transgenic mice or via viral 
vectors. DREADDs can be activated by ‘designer’ ligands (for example, clozapine 
N-oxide (CNO)) that do not have natural targets in the brain and are administered 
systemically or into discrete brain regions. Several DREADDs exist but hM4Di (derived 
from the M4 muscarinic receptor linked to the Gi protein) is often used for inhibition, 
whereas a Gq-coupled M3 muscarinic receptor-based DREADD (hM3Dq) is used for 
activation. Similar to optogenetics, DREADDs can be expressed in a cell type-specific 
and circuit-specific manner. After systemic injection of CNO, the natural firing patterns 
of DREADD-expressing neurons are activated or inhibited for prolonged periods of 
time (up to hours), facilitating the understanding of circuits and complex behaviour.

Activity-dependent imaging
Activity-dependent imaging relies on genetically encoded indicators of neuronal 	
and network-level activity, including indicators of vesicular release, neurotransmitters, 
voltage and calcium250. GCaMP is a widely used genetically encoded calcium indicator 
that becomes fluorescent when bound to Ca2+. Detecting Ca2+-dependent GCaMP 
fluorescence is possible with fibre photometry, in which a small fiberoptic tube or wire 
is embedded next to GCaMP-expressing neurons in specific brain regions to detect 	
cell type-specific population activity. Separately, mini-microscopes can be implanted 	
in brain regions to determine real-time genetically dependent cell activity. The use 	
of activity-dependent indicators enables the estimation of neuronal activity in specific 
brain regions and specific neuronal subtypes at different stages of behaviour. 
Combining cell type-specific and projection-specific activity manipulations with 
real-time imaging of neuronal activity provides unprecedented insights into the 
function of behaviour-controlling microcircuits.

Cre-recombinase-dependent 
expression
A method of inducing 
alterations in gene expression 
involving the ability of the 
enzyme Cre-recombinase  
to induce site-specific 
recombination of genetic 
material.
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the subgenual and dorsal anterior cingulate9,10,37,74 (Fig. 1a). 
Although they do not receive as much attention, the dor-
solateral prefrontal cortex, striatum, thalamus and sen-
sory areas are also likely to be involved37,75. These brain 
regions work in concert for the initial acquisition and 
later expression of fear memory. From a neurological 
perspective, PTSD is interesting because the implicated 
functional neural circuit dysregulation aligns with the 
known function of the affected brain regions across 

species, in neuroimaging studies and in translational 
neuroscience studies37,76,77.

The majority of research into the neuroanatomy of 
PTSD has focused on the role of the amygdala and its 
subregions in fear and threat processing (Fig. 1b). We now 
know that sensory information forming the representa-
tion of the conditioned stimulus is received in the lateral 
and basolateral nuclei of the amygdala and integrated 
with aversive and pain information (the unconditioned 
stimulus), leading to the consolidation of threat mem-
ory via long-term potentiation-like enhancement of 
synaptic efficacy65,78. Similarly, fear memory consolida-
tion depends upon numerous molecular mediators of 
plasticity, including glutamatergic NMDA-dependent 
mechanisms, BDNF, calcium-dependent mechanisms 
and CREB-dependent changes in gene expression79. 
Together, these events lead to enhanced synaptic activity 
and long-term structural changes within the amygdala, 
such that future activations of the conditioned-stimulus 
sensory engram alone become sufficient to activate 
many of the downstream pathways that were previously 
activated only by the unconditioned stimulus.

The results of several decades of research into the 
downstream pathways of the amygdala — in multiple 
species, including rodents, non-human primates and 
humans — indicate that hard-wired axonal projections 
from neurons within the central–medial subdivision 
of the amygdala lead to many of the ‘fear’ and ‘panic’ 
reflexes that are observed during a traumatic cue-induced 
or trigger-induced panic response28,30,37,61,62,64,65 (Fig. 1c). 
These reflexes include increased heart rate mediated by 
projections to the hypothalamus, locus coeruleus and 
dorsal vagal nerve, increased respiratory rate via parab-
rachial connections, gastrointestinal distress via dorsal 
vagal connections, increased startle via projections to  
the RPC, freezing and social anxiety via projections  
to the periaqueductal grey, and hypothalamic–pituitary– 
adrenal (HPA) activation via projections to the para
ventricular nucleus of the hypothalamus. Thus, the 
fear-induced and threat-induced activation of threat res
ponses are among the most well understood ‘behavioural  
reflexes’ in neuropsychiatry.

The hippocampus has been implicated in PTSD 
since the earliest neuroimaging studies of the disorder. 
Multiple studies, beginning with one by Bremner et al. 
in 1995 (ref.80), have reported smaller hippocampal vol-
umes in individuals with chronic PTSD than in healthy 
control participants, and this finding has now been rep-
licated in large-scale neuroimaging meta-analyses80–82. 
As outlined in more detail below, the roles of the hip-
pocampus in context modulation of fear memory 
responses and in discrimination versus generalization 
of threat-related cues and contexts are all thought to be 
relevant to PTSD formation and maintenance37,83–85. One 
of the long-standing questions related to reduced hip-
pocampal volumes and PTSD pertains to the issue of 
cause versus effect. Notably, multiple preclinical studies 
found an association of trauma and chronic stress with 
smaller hippocampal volume86,87. However, pre-existing 
hippocampal deficits in model systems are associated 
with an increased risk of stress responses. Thus, less 
robust hippocampal structure and/or function could be 
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Fig. 1 | Schematic diagram of neural circuitry involved in fear conditioning and 
post-traumatic stress disorder. a | The primary brain regions involved in regulating the 
fear response are the amygdala (red), hippocampus (green) and medial prefrontal cortex 
(blue), which comprises the dorsal and ventral subdivisions, orbitofrontal cortex, and 
anterior cingulate cortex. b | The amygdala sits at the centre of the neural circuit involved 
in regulating fear conditioning. Generally speaking, inputs into basolateral nuclei of  
the amygdala lead to learning about fear, whereas the central amygdala is responsible  
for sending output signals about fear, including to the hypothalamus and brainstem 
structures. c | The interactions of the medial prefrontal cortex component parts and  
the hippocampus constantly regulate amygdala output to subcortical brain regions  
that activate the fear reflex. The medial prefrontal cortex (in particular the ventromedial 
prefrontal cortex) is classically thought to inhibit amygdala activity (and reduce 
subjective distress), whereas the hippocampus has a role both in the coding of fear 
memories as well as in the regulation of the amygdala. ITC, intercalated cells.

Engram
A theoretical representation  
of a neural unit of memory 
storage.
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a pre-existing risk factor for the development of PTSD 
following subsequent trauma. Consistent with this 
directionality, evidence from human and animal stud-
ies indicates that the hippocampus has a clear role in the 
extinction, or learned inhibition, of cued fear memories, 
and that hippocampal disruption might be important for 
the extinction deficits seen in PTSD83,84,88.

The medial prefrontal cortex, in particular the sub-
genual prefrontal cortex, in humans is thought to be 
relatively homologous to the infralimbic region in the 
rodent brain and is increasingly being implicated in 
the neurobiology of PTSD33,73,76. In both rodent studies 
and human studies of fear inhibition and PTSD, this 
brain area seems crucial — working in concert with 
the hippocampus — in providing inhibitory control 
over threat-related memories and behaviours33,73,89–91 
(Figs 2,3). Decreased subgenual prefrontal cortex acti-
vation and reduced white matter integrity of the unci-
nate fasciculus, which connects medial prefrontal cortex 
regions to the amygdala and other anterior subcortical 
structures, have been observed in individuals with 
PTSD compared with healthy control participants92,93. 
By contrast, the dorsal anterior cingulate cortex (dACC) 
within the medial prefrontal cortex seems to be relatively 
homologous to the rodent prelimbic cortex and both 
areas have been implicated in increased fear-responding 

and threat-responding, and are often co-activated with 
the amygdala during the threat response94,95.

Importantly, in regions associated with regulation of 
arousal and emotion, the dissociative subtype of PTSD 
tends to be associated with opposite patterns of brain 
activation than the ‘classic’ pattern of PTSD described 
above37,96. In general, individuals with dissociative 
PTSD have a pattern of ‘emotional overmodulation’, 
with increased activity in the rostral anterior cingulate 
and medial prefrontal cortex, areas of the brain that are 
generally involved in regulating emotion and arousal. 
By contrast, individuals with PTSD without substantial 
dissociation demonstrate ‘emotional undermodulation’ 
with decreased activity in the aforementioned areas. 
Importantly, large-scale functional network connectiv-
ity seems to be dysregulated in individuals with PTSD 
and dissociation, such that trauma-related dissociative 
symptoms, distinct from PTSD and childhood trauma, 
can be estimated on the basis of network connectivity45. 
These clinical and neurobiological findings provide con-
sistent support for the inclusion of a dissociative subtype 
of PTSD in diagnostic nomenclature.

In summary, ‘classic’ PTSD is associated with increased 
threat-responding, hyperarousal, hypervigilance and 
intrusive trauma-associated memories. Furthermore, 
cohort studies have repeatedly found increased amygdala, 
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insula and dACC activation to threatening cues as well as 
decreased hippocampal and subgenual prefrontal cortex 
activation in individuals with the disorder. These find-
ings are consistent with a model in which cue-related 
threat-responding is dysregulated and hyperactivated 
and is not subject to normal inhibitory suppression 
via safety contexts and extinction memory formation 
(Figs 1,2a–d). A somewhat opposite pattern of brain activ-
ity has been reported in individuals with the dissociative 
subtype of PTSD, suggesting fundamentally different 
pathophysiology.

The neurobiology of PTSD symptoms
Sleep disturbances. One of the earliest signs of PTSD 
is sleep disturbance, which often includes nightmares, 
insomnia and fragmented sleep architecture97. As is the 
case with hippocampal size, sleep difficulties might be 
both a risk factor and a symptom of PTSD. Studies in 
military and civilian populations have reported an asso-
ciation between the presence of sleep problems prior to 
trauma and increased PTSD risk following trauma98,99. 
Notably, sleep disturbances sometimes persist after other 
PTSD symptoms subside with treatment100. The sleep 
symptoms of PTSD vary across individuals but many 
people with PTSD have trouble falling asleep and wake 

easily, often waking up many times at night. Intrusive 
memories, in the form of nightmares, are a classic symp-
tom of PTSD, and serve to both exacerbate overall PTSD 
symptoms and contribute to disrupted, non-refreshing 
sleep101. The content of these nightmares often relates to 
details of past trauma, with many individuals with PTSD 
reporting repetitive nightmares102. Post-traumatic night-
mares can be treated with imagery rehearsal therapy, 
which involves the patient ‘rewriting’ the script of the 
dream with a less threatening version during a therapy 
session103. This type of therapy is thought to provide cog-
nitive reframing together with a form of exposure-based 
extinction recovery from the negative traumatic memo-
ries experienced through the nightmares, which is sim-
ilar to the approach used with other trauma-informed 
therapies.

Rates of extinction and safety learning seem to par-
tially explain the difference between people who are 
resilient and able to recover from a traumatic event 
compared to those who maintain acute stress responses 
and develop PTSD. As discussed above, compared 
with healthy individuals, people with PTSD have 
been found to have higher ‘fear load’ during extinc-
tion, worse extinction learning, poorer extinction recall 
and worse safety learning104–106. Notably, some data from 
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studies in humans suggest that extinction deficits are 
mediated in part by fragmented rapid eye movement 
(REM) sleep107. Therefore, future studies could benefit 
the field by examining relationships between emotional 
learning and disturbed sleep in PTSD. This finding also 
raises the possibility that sleep status surrounding the 
traumatic exposure could be a factor in pathogenesis and 
hence a target for mitigation or prevention.

With regards to the neural circuitry of PTSD, the 
hippocampus, amygdala, dACC and insular cortex are all 
implicated in sleep disturbance (Figs 1–3). As discussed 
above, these brain regions are thought to be responsible 
for causing the individual with PTSD to revisit the trau-
matic event in flashbacks and nightmares and for main-
taining a state of hyperarousal. When compared with 
healthy control participants, individuals with PTSD had 
a faster heart rate while sleeping, indicating the presence 
of an enhanced threat response that keeps the body in an 
overall state of hypervigilance108. Notably, the hallmarks 
of disturbed sleep in PTSD include more time spent in 
stage-one light sleep, less restorative slow-wave sleep and 
fragmented REM sleep109,110. Some of these core features 
have also been observed in rodents exposed to traumatic 
stress111. Disruptions in the above brain circuits, com-
bined with dysregulated activity of brainstem activating 
systems (for example, locus coeruleus and periaque-
ductal grey) are thought to contribute to abnormal sleep 
patterns and increased nightmares in PTSD112. Studies in 
animal models have demonstrated that stress-induced 
changes in the function of specific cell populations 
within the nucleus accumbens, a brain area classically 
implicated in motivated behaviour and regulation of 
mood113, can produce alterations in sleep architecture, 
providing a putative neural basis for comorbidity in key 
features of stress-related illness114.

Hypervigilance and hyperarousal. Individuals with 
PTSD seem to have hypervigilance associated with the 
acute-threat behavioural system7,37. Acute threat, which 
encompasses the concept of fear, is defined as activation 
of the brain’s defensive motivational system to promote 
behaviours that protect the organism from perceived 
danger37,62 (Box 1). Fear or threat responses are among 
the most common and consistent underlying factors of 
PTSD and a number of other trauma-related disorders77. 
For example, individuals with PTSD often describe that 
they almost never feel ‘safe’115. Instead, they feel acutely 
threatened by unexpected and generalized cues, and this 
sense of fear and threat pervades much of their lives, 
leading to the avoidance of potential contexts and cues 
that could activate the threat response system. Prolonged 
activation of the threat response — sustained threat — 
in PTSD is thought to occur in part via ongoing ines-
capable intrusive thoughts, flashbacks and nightmares. 
Furthermore, the active avoidance of cues, contexts and 
other reminders associated with the trauma means that 
individuals with PTSD are unable to naturally extin-
guish the initial fear responses. Numerous factors, such 
as enhanced amygdala activity and decreased ‘top-down’ 
cortical regulation, have been associated with fear 
and threat dysregulation, increased trauma load, and 
decreased recovery from fear7,37,116.

One way of assessing vigilance is by studying the 
acoustic startle response. For example, while at home 
and in a state of calmness, healthy individuals might 
exhibit a slight twitch in response to a loud unex-
pected noise. However, if the same decibel level of 
unexpected noise was encountered in a dark alley or at 
another time of increased vigilance, the startle response 
would be much amplified. Many individuals with PTSD 
are always in such a state of hypervigilance and exhibit 
an increased startle response, which is often described 
by these individuals as a state of being ‘jumpy’ or ‘overly 
reactive’ to any slight or unexpected noise. In labora-
tory settings, this response can be studied in humans 
by measuring the eyeblink startle reflex (Fig. 2d). This 
reflex is assessed by measuring the electrical activity of 
the orbicularis muscle during the presentation of different 
unexpected auditory cues in the presence of threatening 
or safe conditions. Numerous laboratory studies have 
found that individuals with PTSD have enhanced antic-
ipatory startle responses and enhanced fear cue-related 
startle responses compared with healthy participants 
and participants who experienced trauma but did not 
develop PTSD6–8,117.

The neural circuitry underlying the acoustic startle 
reflex is well understood — direct projections from the 
auditory brainstem and thalamic nuclei to the reticu-
laris pontis caudalis (RPC) activate spinal motor path-
ways, thereby eliciting a rapid muscle extension–flexion 
response118. This circuitry was characterized over sev-
eral decades by Davis and colleagues, who found (in rats 
and in humans) that central amygdala projections to the 
RPC ‘gate’ the startle response to an auditory cue118–120. 
They also demonstrated that, in a high threat-responsive 
state, increased activation of amygdala–RPC projections 
contributes to elevated startle responses.

Additionally, evidence from functional MRI studies 
indicates that PTSD comprises endophenotypes (also 
known as intermediate phenotypes) such as enhanced 
amygdala activation to fearful cues, impaired ‘top-down’ 
inhibition between the prefrontal cortex and the amyg-
dala, and reduced rostral anterior cingulated cortex 
activation during emotional processing37. These data 
suggest that hyperactivation of threat salience net-
works, in particular the amygdala, dACC and insula, 
in the early aftermath of trauma and during the early 
recovery period as well as with chronic PTSD are all 
associated with ongoing hypervigilance and increased 
threat responses.

Arousal refers to the sensitivity of the organism to 
external and internal stimuli and exists along a contin-
uum121. Arousal facilitates interaction with the environ-
ment in a context-specific manner, can be evoked by 
external (environmental) or internal stimuli, and repre-
sents an activated physiological state that is often accom-
panied by corresponding elevations in threat assessment 
(hypervigilance). The degree of arousal is indicated by 
the degree of sympathetic nervous system activity, which 
is frequently measured using heart rate, skin conduct-
ance and the aforementioned eyeblink startle reflex118–120. 
Increased heart rate and skin conductance in response 
to trauma imagery, indicative of increased arousal, have 
been consistently demonstrated in individuals with PTSD 
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compared with healthy control participants. In addition, 
elevated physiological responses, such as increases in 
the acoustic startle reflex, have been observed in indi-
viduals with PTSD and can serve as a biomarker of the 
development of sustained heightened arousal6,7. These 
observations support the theory that the development of 
sustained heightened arousal in PTSD is characterized by 
progressive neuronal sensitization, and that dysregula-
tion in sympathetic nervous system arousal, particularly 
heart rate, skin conductance and eyeblink in response 
to startling stimuli, might be an endophenotype of the 
disorder. Notably, data from large prospective studies 
suggest that the presence of such sensitization in patients 
in the emergency room predicts the subsequent develop-
ment of PTSD72,122. These data indicate that elevated skin 
conductance and eyeblink startle are markers of dysreg-
ulated arousal that predates the trauma exposure and/or 
is a phasic response to acute trauma.

Although an exhaustive discussion of the neuro
endocrinology of PTSD is beyond the scope of this 
Review, repeated studies have demonstrated abnor-
mal regulation of the HPA stress axis (which regu-
lates endocrine function and emotional responses) in 
PTSD12,123,124. As an example, data on baseline levels of 
adrenocorticotrophic hormone (commonly referred to 
as ACTH) and cortisol in individuals with PTSD are 
somewhat variable, but multiple studies have identi-
fied a PTSD-associated hypersensitivity to HPA feed-
back at the level of the pituitary and adrenal gland. 
That is, dexamethasone suppression tests often show 
a ‘super-suppression’ of plasma cortisol in participants 
with PTSD compared with healthy participants and par-
ticipants with depression62,124,125 (Fig. 2e). This hypersensi-
tivity of the peripheral stress axis is thought to be related 
to chronic hyperactivity of the CNS upstream signals, 
for example, corticotropin-releasing factor (CRF), in the 
amygdala, bed nucleus of the stria terminalis and hypo-
thalamic paraventricular nucleus126 (Fig. 3). Although 
CRF antagonists have not been not successful in treat-
ing PTSD in clinical trials127,128, the underlying biology  
and clinical presentation of PTSD is clearly variable129, and  
behavioural, physiological and/or blood-based biomark-
ers for stratifying specific biological subtypes of PTSD 
will be crucial for success with targeted therapeutics.

Cognition and memory deficits. Although deficits in 
numerous aspects of cognition and memory are seen  
in PTSD130–132, declarative memory is particularly 
impaired when the index trauma is accompanied by 
comorbid traumatic brain injury (TBI)131,133. TBI is often 
but not invariably present in individuals with PTSD. One 
hypothesis is that brain injury-related processes (inflam-
mation, cell death) exacerbate the molecular adaptations 
that occur in response to non-injury-related stress134. 
Deficits in declarative memory also frequently accom-
pany an increased vulnerability to PTSD in individuals 
who have experienced a natural disaster or motor vehi-
cle accident135,136. The brain region most associated with 
PTSD-related declarative memory deficits is the hippo
campus, which is involved in memory formation, storage 
and consolidation85. Notably, some of the oldest data on 
hippocampal structure indicate smaller hippocampal 

volumes in individuals with PTSD than in control 
participants80,81. These findings have now been replicated 
in a much larger meta-analytic study82. In other studies, 
smaller hippocampal volume at 1-month post-trauma 
and decreased inhibition-related hippocampal activity 
both predicted PTSD severity at later time points137–139. 
These data provide evidence that hippocampal volume 
before PTSD development is inversely correlated with 
the likelihood of later development of PTSD.

Insights from omics studies
Post-mortem brain tissue. Numerous research teams 
are currently examining molecular findings in PTSD 
in post-mortem human brains. The largest analysis to 
date was published in 2021 by Girgenti and colleagues, 
who performed differential gene expression and network 
analyses on transcriptomic data from four prefrontal 
cortex regions from participants with PTSD140. They 
found that a co-regulated set of genes marking interneu-
ron function was downregulated in the brains of individ-
uals with PTSD compared with those of healthy control 
participants, representing the most significant gene 
network alteration associated with PTSD. They then 
integrated these transcriptomic data with large-scale 
genome-wide association study (GWAS) data, identify-
ing an association between expression of the interneu-
ron synaptic gene ELFN1 and genetic liability for PTSD. 
Additional analyses found that differential sexually 
dimorphic transcriptomic regulation might contribute 
to the higher rates of PTSD in women. This analysis pro-
vides an initial level of convergence between prefrontal 
cortex gene expression pathways and large-scale genetic 
findings, suggesting that dysregulation of inhibitory cor-
tical circuits is critical to the pathophysiology of PTSD 
in humans.

Another study identified an association between 
multiple forms of psychopathology and advanced DNA 
methylation age141. The results of several studies have 
suggested that PTSD and other stress-related disorders 
increase the risk of neurodegenerative diseases142–144. 
Using PET imaging, Mohamed and colleagues145 found 
that, compared with healthy control participants, par-
ticipants with PTSD with and without a history of TBI 
had widespread tau accumulation in neocortical regions 
that overlapped with typical and atypical patterns of 
Alzheimer disease-like tau distribution. They also found 
evidence for advanced epigenetic ageing in the brain tis-
sue of individuals with PTSD. Before the introduction 
of current multi-omic approaches, several studies had 
identified changes in the expression of plasticity-related 
genes in individuals with PTSD85,146,147. In particular, 
Licznerski and colleagues examined post-mortem sam-
ples of dorsolateral prefrontal cortex from individuals 
who had undergone traumatic stress148. They found that 
expression of the gene encoding serum and glucocor-
ticoid regulated kinase 1 (SGK1) was downregulated 
in participants with PTSD compared with participants 
without PTSD. They validated this finding preclinically 
by showing that inhibition of SGK1 in the medial pre-
frontal cortex of rats results in helplessness-like and 
anhedonic-like behaviours and abnormal dendritic 
spine morphology and synaptic dysfunction. A number 
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of additional, larger post-mortem studies are in progress, 
and the results of these will rapidly expand our under-
standing of the transcriptomic, epigenetic and proteomic 
landscape of the human brain in PTSD.

Peripheral biomarkers. In addition to work on post- 
mortem brain samples, biomarker identification from 
the peripheral tissue has also proven feasible in PTSD 
research, leading to many new discoveries. Examples 
include the large-scale genetics studies and GWAS, out-
lined in more detail below, that have begun to identify 
the genetic architecture of PTSD. Furthermore, hor-
monal measures, such as the reproducible findings of 
super-suppression of the cortisol–HPA axis125,149 medi-
ated by FKBP5 (refs150,151) and findings of enhanced 
inflammation in PTSD152–156 have all been robust and 
important findings for understanding PTSD biology. 
New integrative studies of multi-omics in the aftermath 
of trauma are also providing powerful predictive bio-
marker approaches157,158. Finally, peripheral epigenetics, 
in the form of studies of epigenetic ageing and identifi-
cation of novel cell signalling pathways159–162, as well as 
the demonstration of shared epigenetic markers across 
blood and brain163, are pointing towards new leads in 
understanding PTSD.

GWAS. Identifying genetic alterations in the biological 
pathways that mediate arousal and stress might reveal 
variations that make some individuals more vulnerable 
than others to the effects of stress or trauma exposure 
and, hence, to the development of PTSD. The past dec-
ade has witnessed a rapid expansion in our understand-
ing of the genetics of PTSD, with large-scale consortia, 
including the Psychiatric Genomics Consortium (PGC), 
UK Biobank and the US Million Veterans Program 
(MVP), performing GWAS of tens of thousands of indi-
viduals with PTSD and hundreds of thousands of con-
trols. These efforts have combined with a revitalization 
of post-mortem studies, using modern transcriptomics 
and proteomics, as well as new single-cell RNA sequenc-
ing approaches. As a result, the field is starting to see the 
convergence of some PTSD-associated molecular path-
ways and genetic alterations on the neural circuit regions 
that underlie the threat response.

Several large-scale GWAS studies of PTSD have been 
performed to date16,18,164–167. As these ongoing studies 
continue and the sample sizes increase at each inter-
mediate (‘freeze’) analysis, several robust genome-wide 
significant loci have been associated with PTSD. The 
PGC-PTSD working group anticipates that many more 
genome-wide significant loci will have been identified 
by early 2022 in a planned analysis (termed ‘freeze 3’) 
of hundreds of thousands of samples. Notably, many of 
the significant PTSD-associated genes identified thus 
far, including those involved in sensitivity to the stress 
peptide CRF (see below), are expressed in brain circuits 
previously implicated in PTSD167. Furthermore, pre-
liminary data from post-mortem brain studies of par-
ticipants in the PGC-PTSD GWAS cohort suggest that 
some of the gene pathways will overlap with differen-
tially expressed genes that have been identified in other 
PTSD post-mortem studies140,168.

Two of the largest published GWAS to date come 
from the MVP. Stein et al. conducted genome-wide 
association analyses of over 250,000 MVP participants 
using electronic health record-validated data on PTSD 
diagnosis and quantitative symptoms166. Three signifi-
cant loci were identified in case–control analyses of par-
ticipants of European ancestry and 15 significant loci 
were identified in quantitative symptom analyses. The 
combination of these findings with heritability analysis 
suggested enrichment in several cortical and subcor-
tical regions. Previous analyses of the same cohort by 
Gelernter et al., published in 2019, examined genetic 
data from ~147,000 American individuals of European 
ancestry and ~20,000 African American individuals in 
the MVP to identify risk factors relevant to intrusive 
re-experiencing of trauma — the most characteristic 
symptom cluster of PTSD167. In American individuals 
of European ancestry, eight distinct significant regions 
were identified, of which three (CAMKV, TCF4 and a 
chromosome 17 locus including KANSL1 and CRFR1) 
were highly significant (P < 5 × 10-10). The association 
between intrusive re-experiencing of trauma and CRFR1 
is particularly relevant given the previous findings that 
indicate a role for a dysregulated HPA axis in PTSD 
and interest in CRF antagonists as therapies for certain 
subtypes of PTSD128,169. Overall, the results from these 
well-powered GWAS provide new insights into the 
biology of PTSD.

The PGC-PTSD working group also performed a 
GWAS in a multi-ethnic cohort. This analysis included 
data from more than 30,000 participants with PTSD and 
170,000 control participants164. The results confirmed 
previous PTSD heritability estimates of 5–20%, varying 
by sex18. The genes highly significantly associated with 
PTSD included novel genes and non-coding RNAs as 
well as PARK2, which has been previously implicated 
in Parkinson disease170 and is involved in dopamine 
regulation171. Using a partially overlapping data set from 
the PGC-PTSD GWAS, Huckins et al. used brain and 
non-brain transcriptomic imputation to identify genet-
ically regulated gene expression in ~30,000 participants 
with PTSD and ~166,000 control participants24. They 
found 18 significant genetically regulated gene expres-
sion–PTSD associations corresponding to specific tis-
sue–gene pairs. Of particular interest, Huckins et al. 
found that the expression of SNRNP35, a gene critical 
for RNA splice regulation, is dependent on both corti-
costeroids and stress, and is predicted to be downregu-
lated in the dorsolateral prefrontal cortex of individuals 
with PTSD. Together, these results further demonstrate 
a role for genetic variation in the biology of PTSD risk.

In early 2022, the MVP and PGC-PTSD data 
will be merged for a meta-analysis, termed freeze 3, 
and on the basis of the increased power provided by 
hundreds of thousands of additional samples, many 
more genome-wide significant loci are expected. 
Thus, ongoing genetics analyses, combined with func-
tional transcriptomics and proteomics, are leading to 
the identification of important new insights into the 
genetic basis of PTSD that can be integrated with our 
neural circuit-based understanding of trauma-related 
dysfunction that characterizes this condition.
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Key pathways. Understanding the ways in which the 
risk genes described above contribute to the develop-
ment and persistence of PTSD requires parallel studies 
of the brain pathways regulated by these genes. Two 
key stress pathways that have emerged as particularly 
relevant candidate moderators of risk, clinical pres-
entation and neurobiological characteristics of PTSD 
are the CRF and pituitary adenylate cyclase-activating 
polypeptide (PACAP) systems. Similar to evidence 
noted above indicating that levels of CRF and peptides 
involved in the HPA axis are altered in individuals with 
PTSD172–174, evidence exists of higher circulating blood 
levels of PACAP in individuals with PTSD, especially 
women, than in individuals without PTSD117,175,176. 
Moreover, allelic variation in the genes encoding the 
type 1 receptors of CRF and PACAP (that is, CRFR1 
and PAC1R) predicts the presence of greater hypera-
rousal symptoms and total symptoms of PTSD as well 
as greater physiological arousal during stress-related and 
anxiety-related paradigms117,177,178. Importantly, CRFR1 
and PAC1R are richly expressed within the components 
of canonical threat brain circuit in PTSD, including in 
the amygdala, bed nucleus of the stria terminalis and 
medial prefrontal cortex37,117,179,180. Taken together, these 
data suggest that the CRF and PACAP systems contrib-
ute to the differential risk of PTSD in women versus men 
and to neural alterations that mediate fear and hyper-
arousal in PTSD. Understanding the similarities and 
differences between the acute and persistent effects of 
these peptides may offer new methods of diagnosing and 
treating PTSD181,182.

One of the most studied molecular mechanisms 
underlying stress-related pathophysiology is the FKBP5 
pathway, which regulates the glucocorticoid response 
within cells. Variation in the FKBP5 gene was first identi-
fied in individuals with PTSD who experienced abuse as 
children172,183 and, since then, changes in FKBP5 expres-
sion have been linked to many aspects of PTSD patho-
physiology, including the type and severity of symptoms, 
neural activity, and startle physiology150,184–186. Studies in 
animal models of PTSD have also consistently pointed to 
a role for FKBP5 in traumatic stress185,187,188. Additionally, 
post-mortem studies have now identified increases in 
FKBP5 expression in multiple cortical regions in individ-
uals with PTSD compared with control participants140,189. 
Although FKBP5 has yet to be identified on a large-scale 
GWAS of PTSD, these compelling findings suggest that it 
is likely to be important in gene–environment regulation 
of the stress response.

Therapeutics: treatment and prevention
The current standard treatments for PTSD include 
pharmacotherapies and psychotherapies. In general, phar-
macotherapies reduce symptoms related to anxiety,  
arousal and depression. Evidence-based psychotherapy 
approaches range from supportive and emotional 
skills-building to exposure-based therapies that aim to 
restructure the underlying dysregulated traumatic mem-
ories. Currently, the only FDA-approved treatments for 
PTSD are the serotonin reuptake inhibitors sertraline 
and paroxetine; however, numerous serotonergic, dopa-
minergic and noradrenergic antidepressants and/or  

anxiolytic medications have shown some efficacy for 
relieving the symptoms of PTSD in double-blind, 
randomized placebo-controlled trials (RCTs)36,43,190.

Although dopamine receptor D2 antagonists (for 
example, atypical antipsychotic drugs) have some 
utility for the treatment of refractory PTSD that is 
non-responsive to other treatments, including first-line 
serotonin reuptake inhibitor treatment, the largest RCTs 
of the D2 risperidone augmentation failed to show a ben-
efit of treatment191,192. Specifically, open-label trials and 
small RCTs have reported that treating patients with 
trauma-related intrusive thoughts and sounds/voices 
with atypical antipsychotic medications can be particu-
larly helpful193. The results of two meta-analyses suggest 
that low-dose atypical antipsychotic medications can 
be useful for augmentation in refractory PTSD comor-
bid with depression, similar to the beneficial effects of 
these drugs in refractory depression191,194. In small tri-
als, anti-epileptic drugs that are used as mood stabiliz-
ers (for example, sodium valproate195, topiramate196 and 
lamotrigine197) have also been found to have some effi-
cacy in PTSD198, in particular related to mood and anger 
dysregulation; however, larger-scale RCTs of these drugs 
did not show robust effects199,200.

The medication that could be considered to have 
the most ‘precision’ target in PTSD is prazosin, an 
α-adrenergic antagonist, that has been shown in sev-
eral RCTs to decrease the occurrence of nightmares in 
PTSD201–203. Prazosin was originally administered to 
veterans with PTSD for the treatment of hypertension 
or benign prostate hypertrophy, which is a frequent 
comorbidity of PTSD204, and was found to also help 
with nightmares205. The drug was then repurposed 
for use in PTSD on the basis of its targeting of subcor
tical α1-adrenergic receptors that are involved in emo-
tional hyperarousal and norepinephrine-mediated 
sleep dysregulation206,207. Early small trials of prazosin 
in individuals with PTSD produced very promising 
results202, and moderately powered randomized tri-
als have reported benefits of prazosin over placebo 
on trauma nightmares, sleep quality and total PTSD 
symptoms201,208,209. Unfortunately, the largest RCT to 
date, published in 2018, failed to identify an effect of 
prazosin on nightmares or sleep quality in veterans 
with PTSD210. However, prazosin is known to have a 
narrow therapeutic window in terms of dose, and doses 
similar to those required for an effect on nightmares 
have an effect on orthostasis211, which makes the use of 
higher doses untenable. Therefore, an optimal dose for 
an effect on nightmares might have not been reached 
in this study. Furthermore, no biomarkers of adren-
ergic dysregulation, which might identify individuals 
who would be most responsive to this treatment, were 
required for study inclusion. Prazosin treatment could 
still be a useful approach but, as with many treatments 
for PTSD and other psychiatric indications, identifying 
biomarkers of treatment efficacy for patient stratifi-
cation will be critical given the vast heterogeneity of 
the syndrome.

To date, the most efficacious treatment for PTSD has 
been trauma-focused psychotherapy, generally in the 
form of exposure-based treatments212. With ‘imaginal 
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exposure’, a patient describes the experience of the trau-
matic event in as much detail as possible to the thera-
pist. The patient then repeatedly re-tells this memory 
over extended periods of time; indeed, the most com-
mon exposure-based treatment regimen is referred 
to as prolonged exposure213. Through this process, 
over multiple therapy sessions, with each one focused 
on the most salient distressing memory at the time, 
the patients’ emotional distress to the memory dimin-
ishes. Patients often describe feeling as if a ‘black hole’ 
of negative memory and emotion becomes neutralized, 
if not almost boring to them62. This process of exposure 
is thought to diminish fear via the well-understood 
neural mechanisms of Pavlovian conditioning-based 
‘extinction’ learning described above214. Extinction can 
be conceptualized as ‘retraining’ the brain, specifically 
through known neural circuits that mediate threat 
responses so that previously highly threatening cues 
are now re-learned — and experienced — as signalling 
safety. On the basis of animal studies described above, it 
seems likely that extinction plays a key role in successful 
prolonged exposure therapy and other similar cognitive 
behaviour therapies such as cognitive processing ther-
apy and eye movement-desensitization and reprocess-
ing therapy, which are also common trauma-focused 
psychotherapies for PTSD.

Possible future approaches. Considering the rapid pro-
gress in our understanding of the neurobiology and 
biomarkers that might predict trajectories of PTSD, 
we expect that future approaches to treatment will 
leverage these neurobiological and biomarker targets. 
Approaches in development include the combination 
of pharmacological targeting of neural plasticity and 
targeted emotional learning215 as well as EEG-based 
biofeedback targeting amygdala activation216, both of 
which aim to specifically enhance the natural learn-
ing processes that underlie fear inhibition and extinc-
tion. Novel pharmacological therapies targeting the 
cellular and molecular pathways identified in genetic, 
transcriptomic and translational studies are also being 
developed37,43,215,216. Additionally, other experimental 
treatments, including ketamine derivatives and drugs 
that block kappa-opioid receptors217,218, show evidence of 
being able to mitigate stress responses in animal models 
of PTSD if given prophylactically, raising the intriguing 
possibility that it might someday be possible to prevent 

the development of PTSD. Although stress can be unpre-
dictable in the context of everyday life, some of the 
most severe, debilitating and costly forms of stress (for 
example, those encountered during a combat mission 
or while responding to a disaster) involve a recognizable 
‘lead time’ that precedes exposure, offering a window of 
opportunity for prevention.

Conclusions and future directions
This Review addresses the neuroscience-based under-
standing of some of the primary symptoms of PTSD, 
including hyperarousal, dissociation, intrusions and 
sleep dysregulation, all of which are increasingly being 
understood through translational research. Evidence 
suggests that PTSD can be viewed as a disorder that 
involves dysregulation of normal fear processes, and 
the neural circuitry underlying fear and threat-related 
behaviour and learning in mammals has been defined 
in great detail over the past 40 years. The underlying 
circuitry includes hub brain regions such as the amyg-
dala, insula, hippocampus and the medial prefrontal 
circuit, and these are among the most well-understood 
brain circuits in behavioural neuroscience. Notably, 
the study of threat responses and their underlying cir-
cuitry has led to rapid progress in our understanding 
of learning and memory processes. Finally, large-scale 
genetic approaches to understanding trauma-related 
disorders and PTSD have been highly successful. These 
findings, along with those from transcriptomics, metab-
olomics and proteomics studies, are rapidly expanding 
the list of potential targets for personalized medicine and 
patient stratification54,158,219,220. The next few years offer 
great promise for combining genetic discoveries with a 
deep understanding of the neural circuits that regulate 
the core behavioural features of PTSD.

In conclusion, PTSD is a syndrome that is common 
in individuals who have been exposed to severe trauma, 
is frequently comorbid, and is associated with a signi
ficantly increased risk for morbidity and mortality.  
The integration of advances in our understanding of the 
neural circuitry, physiology, intermediate phenotypes 
and genetics of PTSD, along with large-scale longitudi-
nal studies, offer great promise for progress in the pre-
diction, intervention and, possibly, prevention of this 
debilitating psychiatric disorder.
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