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Consumer-based voice assistants have the ability to deliver evidence-based treatment, but their therapeutic potential is largely
unknown. In a pilot trial of a virtual voice-based coach, Lumen, delivering problem-solving treatment, adults with mild-to-moderate
depression and/or anxiety were randomized to the Lumen intervention (n= 42) or waitlist control (n= 21). The main outcomes
included changes in neural measures of emotional reactivity and cognitive control, and Hospital Anxiety and Depression Scale
[HADS] symptom scores over 16 weeks. Participants were 37.8 years (SD= 12.4), 68% women, 25% Black, 24% Latino, and 11%
Asian. Activation of the right dlPFC (neural region of interest in cognitive control) decreased in the intervention group but increased
in the control group, with an effect size meeting the prespecified threshold for a meaningful effect (Cohen’s d= 0.3). Between-
group differences in the change in activation of the left dlPFC and bilateral amygdala were observed, but were of smaller
magnitude (d= 0.2). Change in right dlPFC activation was also meaningfully associated (r ≥ 0.4) with changes in self-reported
problem-solving ability and avoidance in the intervention. Lumen intervention also led to decreased HADS depression, anxiety, and
overall psychological distress scores, with medium effect sizes (Cohen’s d= 0.49, 0.51, and 0.55, respectively), compared with the
waitlist control group. This pilot trial showed promising effects of a novel digital mental health intervention on cognitive control
using neuroimaging and depression and anxiety symptoms, providing foundational evidence for a future confirmatory study.
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INTRODUCTION
The prevalence of depression in the United States has increased
multiple fold to approximately 32% during the COVID-19
pandemic [1]. Correspondingly, >40 million adults (~19%) have
anxiety disorders [2], often with co-morbid depressive symp-
toms. Efficacious psychotherapies such as problem-solving
treatment (PST) exist [3], and in-person PST is a proven
intervention for treating both depression and anxiety, which
often manifest as comorbid conditions [4–6]. However, access
to such therapies is affected by shortages in mental healthcare
professionals and high out-of-pocket costs. Digital mental
health applications offer viable solutions [7, 8]; consumer-
based voice assistants that leverage artificial intelligence to
deliver psychotherapy is a nascent and underexplored area with
considerable potential for behavioral counseling and to
promote emotional well-being [9, 10].
With the integration of voice assistants in mobile devices, their

use is pervasive; recent reports have highlighted that nearly a
third of search queries rely on voice input [11]. However, their use

in healthcare delivery is limited [10], with current research largely
focusing on information seeking activities on topics including
healthy lifestyle [12, 13], medication names [14], and mental
health [15, 16]. Although prototypes of voice-based applications
for behavioral assessment and counseling have been developed
(e.g., [17, 18]), high-quality clinical research on their therapeutic
potential is currently lacking.
Relying on user-centered design principles, and aligned with

the treatment fidelity of PST, we developed a virtual voice-based
coach, Lumen, that delivers PST for patients with mild-to-
moderate depression and/or anxiety [19, 20]. We conducted a
pilot randomized clinical trial (RCT) to obtain initial evidence on
the effects of PST delivery using Lumen on brain function and
clinical outcomes, as is consistent with a theory-driven,
mechanism-focused approach to treatment evaluation. The
primary objectives were to assess the magnitude of treatment
effects on: (a) the activation of a priori neural targets involved in
emotional reactivity and cognitive control, the two core theore-
tical constructs for PST, and (b) depression and anxiety symptoms.
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We also assessed associations between neural targets and self-
reported surveys of emotional reactivity and cognitive control.

METHOD
The Institutional Review Board for the University of Illinois Chicago (UIC)
approved the study. All participants provided written consent. The study
was registered on ClinicalTrials.gov (NCT# 04524104).

Participants
Enrollment followed a multi-step process (Fig. 1). Participants were
recruited between April 5, 2021, and October 7, 2021, from the outpatient
care clinics at the University of Illinois Hospital and Health Sciences System
(UI Health) and employee email listservs at UIC, a minority-serving
institution.
Adults were deemed eligible if they had a Patient Health Questionnaire-

9 (PHQ-9) score of 10–19 and/or a Generalized Anxiety Disorder Scale
(GAD-7) score of 10–14, without serious medical or psychiatric comorbid-
ities or other exclusions (see Supplementary Material, Section A; also see
full protocol in Supplementary Material, Section H). Participants were asked
to self-identify their race and ethnicity based on fixed categories to comply
with National Institutes of Health’s reporting requirements.
Participants were compensated for this study. As part of this study,

participants made two visits for neuroimaging (baseline [visit 1], and at 16
weeks [visit 2]). Upon completion of visit 1, all participants received $50 in
compensation. At visit 2, participants in the Lumen intervention arm could
choose to receive $100 in compensation or keep the iPad with their access
to Lumen deactivated. For those in the waitlist control arm, at visit 2,

participants could choose to receive $100 in compensation or choose to
attend a Lumen orientation session and receive a Lumen PST-enabled iPad
(which they could keep in lieu of the $100 compensation).

Randomization and masking
Participants were randomly assigned in a 2:1 ratio to receive the Lumen
intervention or to be in a waitlist control group using a validated online
system [21] based on Pocock’s covariate-adaptive minimization [22]. The
2:1 allocation allowed more participants to receive the Lumen intervention
without substantially reducing statistical power [23]. Pocock’s minimization
method was used to achieve better-than-chance marginal balance across
multiple baseline characteristics: age, sex, race/ethnicity, education, PHQ-9
score, GAD-7 score, and Digital Health Literacy [24]. Investigators, the
safety monitor, outcome assessors, and data analysts were blinded to
participants’ treatment assignment.

Lumen
Lumen is a virtual voice-based coach developed on Amazon’s Alexa
platform. Lumen delivers an evidence-based PST program [5, 6] consisting
of eight sessions (four weekly, followed by four biweekly sessions) for
patients with mild-to-moderate depression and/or anxiety. PST is patient-
driven, where the coach acts as a guide to identify a problem, set a goal,
brainstorm solutions, choose a solution, develop an action plan, and to
implement and evaluate the plan [25]. This stepwise approach makes PST
appropriate for therapy delivery using a virtual voice-based coach.
Lumen was designed through an iterative user-centered process that

involved software developers, interaction designers, psychiatrists, PST
experts, and behavioral scientists. Several iterations of the prototype were

Fig. 1 Consort chart. Flowchart regarding the enrollment and randomization of participants.
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internally tested; a fully functional prototype underwent feasibility and
usability testing with 26 users [19]. The design was driven by two key
principles: (a) aligning participants’ voice-based interaction with Lumen
similar to the cognitive processes of human communicative interactions
[26], and (b) configuring the content of the interactions with the principles
and process of evidence-based PST. Towards this end, the Lumen
architecture included multiple, interacting components that managed
voice-based therapy delivery (a conversation manager), and ascertaining
persistence and consistency across the eight therapy sessions (a context
manager; see additional information in Supplementary Material sections B,
C, and D; Figure S1, Table S1, and Table S2).
For this study, Lumen was integrated within the Alexa app on an iPad

provided to all participants. Lumen participants attended an in-person
orientation session with a trained health coach where they received their
iPad, intervention workbook, and completed a tutorial on how to interact
with Lumen. Participants were instructed to begin their PST right away,
within 1 week of their orientation session and the health coach helped
schedule their 4 weekly and the following 4 biweekly PST sessions. Within
3 days of their first scheduled PST session, the health coach called
participants to inquire about any technical issues and helped troubleshoot
these issues (if any). Participants received reminder text messages about
their upcoming and overdue (if any) PST sessions. Participants with
overdue sessions, even after their reminders, were called by the health
coach and encouraged to complete their outstanding session(s). Partici-
pants also had the opportunity to reach out to the health coach if they
faced any issues as part of their study.
For each session, participants instantiated Lumen PST through the Alexa

app with a “Launch Lumen Coach” voice instruction and completed their
assigned PST sessions. A typical Lumen session lasted ~12min. Between
sessions, participants completed surveys and ecological momentary
assessments (EMAs, see Supplementary Materials, Section D, Table S2).

Waitlist control
Participants in the waitlist control arm received automated text messages
to complete surveys and EMAs at intervals similar to the intervention arm.
These participants could choose to receive a Lumen-enabled iPad after
their end-of-study assessments at 16 weeks.

Neural target measures
Blinded outcome assessors conducted standardized assessments at
baseline and 16 weeks. Task-based functional magnetic resonance imaging
(fMRI) data were collected utilizing previously-established standardized
fMRI sequences and parameters [27, 28] that inform transdiagnostic
phenotypes of neural circuit dysfunction for depression and anxiety. These
fMRI methods, including facial expressions task and Go-NoGo tasks, have
been standardized in previous work designed for application to precision
psychiatry and target engagement studies [29, 30]. A brief description of
these tasks are provided below, and additional details can be found in the
Supplementary Materials (Section E).

Facial expressions task. A standardized set of 3D evoked facial expression
stimuli was presented in pseudorandom order, with 5 repeated blocks of
8 stimuli per block for sad, fear, anger, and happy relative to neutral blocks
[29]. Participants were instructed to continuously view the faces and were
informed beforehand that they would be asked post-scan questions about
the faces they were viewing. To assess amygdala activation for the
negative affect circuit, our analysis focused on threatening faces only,
given our prior research showing threat-related amygdala activation
mediating the effect of in-person PST on depression and problem-solving
outcomes [31]. Threat stimuli included a combination of fear and anger
stimuli relative to neutral blocks. During the conscious viewing condition,
each face was presented for 500ms, with an interstimulus interval of
750ms. To elicit the negative affect circuit in response to non-conscious
threat stimuli, the same fear and anger stimuli were presented in a
backward-masking design to prevent awareness. In this non-conscious
condition, face stimuli were presented for 10ms followed immediately by
a neutral face mask stimulus for 150ms, and with a stimulus onset
asynchrony of 1250ms to match that of the conscious condition [32].

Go-NoGo task. For the Go-NoGo paradigm, the ‘Go’ and ‘NoGo’ stimuli
were presented for 500ms each with an interstimulus interval of 750ms.
The Go-NoGo paradigm allowed for event-related analysis and is used to
assess impulsivity (automatically generated ‘Go’ responses) versus inhibi-
tion (‘NoGo’ responses). In the ‘Go’ trials, participants were asked to press a

button on GREEN stimuli as quickly as possible (with the word “press”
displayed in green); in the ‘NoGo’ trials, participants should withhold
button presses on RED stimuli (with the word “press” displayed in red). The
probability of ‘NoGo’ stimuli was 0.33. A total of 180 ‘Go’ and 60 ‘NoGo’
stimuli were presented in a pseudorandom order with a constraint to
ensure that ‘NoGo’ stimuli were not repeated more than 3 times in a row.
Reaction times and number of errors on task were used to evaluate task
performance [29].
Informed by previous findings [6, 31] identifying neural targets engaged

by in-person PST, the primary target regions of interest (ROIs) were the
amygdala (bilaterally) representing a key node in the negative affect
circuit, and the dorsal lateral prefrontal cortex (dlPFC) (bilaterally), a key
node in the cognitive control circuit. The negative affect circuit was
engaged by the viewing of threat faces in the non-conscious viewing
condition. The cognitive control circuit was engaged using the Go/No-
go task.
Person-level activation of the ROIs for each contrast of interest for each

task (e.g., threat versus neutral faces, no-go versus go) was derived in a
manner consistent with the methods used in prior studies [27].

Clinical outcome measures
On the Hospital Anxiety and Depression Scale (HADS) [33, 34], depression
and anxiety symptom scores ranged from 0 to 21, with 0–7 indicating
normal; 8–10 indicating borderline abnormal (borderline); and 11–21
indicating abnormal (case). HADS total scores were computed as the sum
of depression and anxiety scores, indicating overall psychological distress.

Self-reported measures
Validated self-report surveys of PST theory-based constructs of emotion
(affect, worry) and cognition (problem-solving, dysfunctional attitudes)
were also completed at baseline and 16 weeks. The Positive and Negative
Affect Schedule (PANAS) assessed positive and negative affect [35], with
scores ranging from 10 to 50 and higher scores representing higher levels
of positive or negative affect. Worry was measured using the Penn State
Worry Questionnaire (PSWQ), with a higher total score indicating more
worry (range 16–80) [36]. The Social Problem-solving Index-Revised Short
Form (SPSI-R:S) assessed total problem-solving ability, with the higher
score indicating more productive problem-solving skills, and 5 subscales
including problem orientation (positive, negative) and problem-solving
styles (rational, impulsive/careless, and avoidant) [37]. Each subscale was
scored by summing the respective 5 items (each from 0 to 4), and the total
problem-solving ability score ranged from 0 to 20 by averaging the
subscale scores. Dysfunctional Attitudes Scale (DAS) measured the
presence and intensity of dysfunctional attitudes, with higher scores
indicating more dysfunctional attitudes (range 40–280) [38].

Statistical analysis
The intervention vs. control effects on changes in neural targets and self-
reported measures of emotional reactivity and cognitive control from
baseline to 16 weeks were assessed using t tests. Correlations of changes
in neural targets with changes in self-reported measures were estimated
using Pearson’s correlation tests.
The intervention vs. control effects on changes in HADS scores from

baseline to 16 weeks were tested using ordinary least square regression
with adjustment of baseline values of the outcome measure. Each model
included all participants with follow-up data on the outcome at 16 weeks,
and participants were analyzed based on the group to which they were
assigned. Moderation analysis used the same models as above plus the
main effect of each potential effect modifier (e.g., sex) and its interaction
with the group; the latter, if significant, rejected the null hypothesis of no
moderation. Model-adjusted between-treatment mean differences with
95% confidence intervals (CIs) for the overall sample and the subgroups
defined by the effect modifiers were reported. Cohen’s d was calculated by
the mean difference between the two groups divided by the pooled
standard deviation.
Given that this study was a pilot RCT, the primary purpose was to

establish a reliable signal regarding the impact of Lumen on neural targets
and clinical outcomes that would be promising enough to warrant further
research. Towards this end, we used Cohen’s d ≥ 0.3 to define the
meaningful mean difference between the intervention and control groups
in neural target and symptom changes from baseline to 16 weeks.
Moreover, our approach to data reporting and interpretation regarding the
intervention effects on neural targets and symptom outcomes was focused
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on the magnitude and precision (95% CI) of the effect estimates, and not
on p-values [5]. Similarly, we were not focused on smaller correlations
(Pearson’s r < 0.4) between the neural targets and self-reported measures
as it would have limited clinical relevance.
All analyses were conducted using SAS, version 9.4 (SAS Institute Inc.,

Cary, North Carolina).

Sample size calculation
The sample size of this pilot RCT was calculated using a confidence
interval approach. To obtain a precision interval with a standardized
half-width of 0.50 (akin to a medium effect) with 90% assurance, we had
planned a sample size of 60 (nTreatment = 40, nControl= 20), assuming
≥85% retention at 16 weeks. A precision interval approach was used
where we defined that, compared with the waitlist control group, the
intervention group will demonstrate a meaningful improvement in
outcomes (in both neural targets and symptoms) if the standardized

between-group mean difference was at least Cohen’s d= 0.3 in favor of
intervention. At this effect size, the upper limit of the precision interval
overlaps with d= 0.8 (large effect) given a standardized half-width of
0.5 with 90% assurance that the interval contains the true mean
difference based on power analysis. For the correlation of change in
neural targets with change in self-reported measures, a sample size of
51 (i.e., 60 × 85%) would be sufficient to detect a coefficient of r= 0.4
with 80% power and 2-sided α= 0.05.

RESULTS
Sample characteristics and retention
Of 1049 individuals who completed screening, 936 were
ineligible and 50 declined or were unable to participate
(Fig. 1). Randomized participants included 42 in the interven-
tion and 21 in the waitlist control. Participants had a mean age

Table 1. Eligibility screening and sociodemographic measuresa; the prognostic factorsb for randomization included age, sex, race/ethnicity,
educational level, PHQ-9 score, and GAD-7 score.

Characteristic All participants (n= 63) Intervention (n= 42) Control (n= 21)

Age, yearsb 37.8 ± 12.4 38.9 ± 12.9 35.6 ± 11.5

Female, %b 43 (68.3) 28 (66.7) 15 (71.4)

Race/Ethnicity (%)b

Non-Hispanic White 22 (34.9) 15 (35.7) 7 (33.3)

African American 16 (25.4) 8 (19.1) 8 (38.1)

Asian/Pacific Islander 7 (11.1) 5 (11.9) 2 (9.5)

Hispanic 15 (23.8) 12 (28.6) 3 (14.3)

Other (e.g., declined to state, multirace) 3 (4.8) 2 (4.7) 1 (4.8)

Education (%)b

High school/GED or less 2 (3.2) 1 (2.4) 1 (4.8)

College - 1 year to 3 years 14 (22.2) 10 (23.8) 4 (19.1)

College - 4 years or more 21 (33.3) 17 (40.5) 4 (19.1)

Post college 26 (41.3) 14 (33.3) 12 (57.1)

Income (%)

< $35,000 17 (27.0) 9 (21.4) 8 (38.1)

$35,000–<$55,000 15 (23.8) 10 (23.8) 5 (23.8)

$55,000–<$75,000 8 (12.7) 6 (14.3) 2 (9.5)

>=$75,000 23 (36.5) 17 (40.5) 6 (28.6)

PHQ-9 scoreb 12.8 ± 3.1 12.7 ± 3.0 13 ± 3.3

Mild depression 5–9 (%) 7 (11.1) 4 (9.5) 3 (14.3)

Moderate depression 10–14 (%) 38 (60.3) 27 (64.3) 11 (52.4)

Moderately severe depression 15–19 (%) 18 (28.6) 11 (26.2) 7 (33.3)

GAD-7 scoreb 9.7 ± 2.7 9.8 ± 2.5 9.4 ± 3.0

Minimal anxiety 0–4 (%) 1 (1.6) 0 (0.0) 1 (4.8)

Mild anxiety 5–9 (%) 26 (41.3) 17 (40.5) 9 (42.9)

moderate anxiety 10–14 (%) 36 (57.1) 25 (59.5) 11 (52.4)

HADS Depression score 7.3 ± 3.0 7.6 ± 2.9 6.7 ± 3.2

HADS Anxiety score 10.6 ± 3.3 11.0 ± 2.7 9.9 ± 4.1

HADS Total score 17.9 ± 5.2 18.6 ± 4.3 16.6 ± 6.6

Digital Health Literacy (%)b

Low 1–1.999 0 (0.0) 0 (0.0) 0 (0.0)

Medium 2–2.999 11 (17.5) 7 (16.7) 4 (19.0)

High 3–4 52 (82.5) 35 (83.3) 17 (81.0)

GAD-7 Generalized Anxiety Disorder-7, GED general educational development, HADS Hospital Anxiety and Depression Scale, PHQ-9 Patient Health
Questionnaire-9.
aValues are mean ± SD unless noted otherwise.
bPrognostic factors for randomization: age, sex, race/ethnicity, education, digital health literacy, PHQ-9, and GAD-7.
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of 37.8 years (SD= 12.4), 68% were women, 25% were Black,
24% were Latino, 59% had a high school or college (1 to 4+
years) education, and 51% had an annual income less than
$55,000 (Table 1). On average, participants had moderate
depression (mean PHQ-9 Score=12.8 [SD= 3.1]) and anxiety
(mean GAD-7 Score=9.7 [SD= 2.7]), and borderline abnormal
HADS depression scores (mean HADS depression= 7.3 [SD=
3.0]), and abnormal HADS anxiety scores (mean HADS anxiety
Score=10.6 [SD= 3.3]). Participants had a total HADS score of
17.9 [SD= 5.2]. Based on PHQ-9 and GAD-7 categories of
symptom severity, a majority of the 63 participants had
moderate to moderately severe depression or moderate
anxiety, and 29 had both. All 63 participants had complete
baseline data, and 61 (97%) were assessed at 16 weeks. Of the
42 Lumen participants, 38 (90.5%) completed at least 4 PST
sessions, and 34 (81.0%) completed all 8 PST sessions.

Intervention effect on activation of neural targets
Between-group mean differences in changes in the primary ROIs
(i.e., activation decrease in the control group > intervention in L.
amygdala, activation decrease in intervention group > control
group) engaged in the non-conscious threat stimuli (i.e.,
emotional reactivity) from baseline to 16 weeks did not meet
the Cohen’s d= 0.3 threshold. There was, however, a meaningful
change in a primary cognitive control target: the activation of
both the right and left dlPFC decreased in the intervention from
baseline to 16 weeks compared with the control, while the

between-group mean difference in activation of the right dlPFC
(−0.20 [95%CI: −0.61, 0.22]) met Cohen’s d= 0.3 (Table 2).

Intervention effect on clinical outcomes
At 16 weeks, intervention participants had greater improvements
in their HADS depression, anxiety and total scores compared with
control participants, with a medium effect size. Model-adjusted
between-group mean difference was −1.33 (95%CI: −3.26, 0.60;
Cohen’s d= 0.49) for the HADS depression score, −1.58 (95%CI:
−3.82, 0.66; Cohen’s d= 0.51) for the HADS anxiety score, and
−2.89 (95%CI: −6.76, 0.99; Cohen’s d= 0.55) for the HADS total
score (Table 3).
The treatment effect on the HADS depression score was

significantly moderated by sex (p= 0.048), education (p= 0.048),
and digital health literacy score (p= 0.03). The Lumen group had
consistently greater improvements than the control group in
HADS depression, anxiety, and total scores than control partici-
pants among women (between-group mean difference [95% CI]:
−2.5 [−4.8, −0.3], −2.2 [−4.9, 0.5], −4.7 [−9.3, −0.2], respectively),
non-White (−2.4 [−4.7, −0.0], −2.7 [−5.4, 0.0], −5.1 [−9.8, −0.4],
respectively), and those with college or less education (−2.9 [−5.6,
−0.2], −3.1 [−6.3, 0.1], −6.0 [−11.4, −0.6], respectively) at 16
weeks (Fig. 2).
In addition, participants with lower digital health literacy scores

had a greater mean decrease in their HADS depression score in
the Lumen vs. control group (Supplementary Material, Section F,
Figure S2).

Table 2. Treatment effects on primary neural target regions of interest and self-reported measuresa,b.

Circuit Target Measure Baseline Change at 16 weeks from Baseline Cohen’s d

Intervention Control Intervention Control Mean difference
(95% CI)

Neural target regions of interest

Negative
Affect

Amygdala L 0.06 ± 0.19 0.06 ± 0.21 −0.07 ± 0.39 −0.13 ± 0.29 0.05(−0.16, 0.27) 0.2

Amygdala R 0.05 ± 0.19 0.07 ± 0.31 −0.14 ± 0.44 −0.07 ± 0.40 −0.07(−0.33, 0.19) 0.2

Cognitive
Control

dlPFC L 0.23 ± 0.41 0.22 ± 0.38 −0.02 ± 0.49 0.09 ± 0.43 −0.11(−0.39, 0.17) 0.2

dlPFC R 0.58 ± 0.60 0.52 ± 0.59 −0.10 ± 0.64 0.09 ± 0.78 −0.2(−0.61, 0.22) 0.3

Self-reported measures

Negative
Affect

Positive Affect
Scorec

25.21 ± 6.26 27.43 ± 6.74 4.03 ± 7.79 2.43 ± 7.89 1.6(−2.62, 5.82) 0.2

Negative Affect
Scored

27.43 ± 6.11 25.57 ± 8.41 −1.60 ± 9.67 −0.90 ± 7.58 −0.7(−5.56, 4.17) 0.1

Penn State Worry
Questionnairee

60.69 ± 11.22 59.14 ± 11.46 −3.90 ± 9.99 −3.95 ± 11.01 0.05(−5.53, 5.63) 0.0

Cognitive
Control

SPSI-R:S raw scoref 11.27 ± 2.99 12.48 ± 2.74 0.83 ± 2.92 0.42 ± 2.19 0.41(−1.04, 1.86) 0.2

PPO raw scoref 10.52 ± 4.39 11.05 ± 4.48 0.60 ± 4.39 1.62 ± 3.51 −1.02(−3.24, 1.2) 0.2

NPO raw scoref 9.69 ± 3.53 8.00 ± 4.80 −1.03 ± 4.59 −0.62 ± 3.67 −0.41(−2.72, 1.91) 0.1

RPS raw scoref 9.71 ± 4.22 10.86 ± 3.82 1.95 ± 4.61 0.52 ± 5.57 1.43(−1.25, 4.1) 0.3

ICS raw scoref 6.24 ± 4.12 5.29 ± 3.89 −0.43 ± 4.06 1.05 ± 3.56 −1.47(−3.57, 0.63) 0.4

AS raw scoref 7.95 ± 5.52 6.24 ± 4.35 −0.15 ± 4.09 −0.38 ± 4.33 0.23(−2.02, 2.48) 0.1

Dysfunctional
Attitudes Scaleg

140.0 ± 37.54 128.4 ± 38.36 −12.8 ± 30.39 −6.62 ± 20.49 −6.16(−20.95, 8.64) 0.2

SPSI-R:S Social Problem-solving Index-Revised Short Form, PPO positive problem orientation, NPO negative problem orientation, RPS rational problem-solving
style, ICS impulsive/careless problem-solving style, AS avoidant problem-solving style.
at tests.
bValues are mean ± SD unless otherwise noted.
cScores range from 10 to 50, with higher scores representing higher levels of positive affect.
dScores range from 10 to 50, with lower scores representing lower levels of negative affect.
eThe total score of the scale ranges from 16 to 80, with higher score indicating more worry.
fSPSI-R:S score= (PPO raw score/5)+(20- NPO raw score)/5+ (RPS raw score/5)+(20- ICS raw score)/5+ (20- AS raw score)/5; the higher the score the more
productive overall problem-solving orientation and skills. Subscales (PPO, NPO, RPS, ICS, and AS) are raw scores without reversal.
gScores range from 40 – 280, with higher score indicating more dysfunctional the subject’s attitudes.
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Intervention effect on self-reports
Each of the self-reports associated with emotional reactivity
(positive affect score, negative affect score, Penn State worry
questionnaire) showed improvement in the intervention and
control groups from baseline to 16 weeks, but did not show
meaningful between-group differences (all Cohen’s d < 0.3).
Similarly, all self-reports associated with cognitive control showed
improvement over time, with the rational problem-solving (1.43
[95%CI: −1.25, 4.1], Cohen’s d= 0.3) and impulsive/careless raw
scores (−1.47, [95%CI: −3.57, 0.63], Cohen’s d= 0.4) having
meaningful differences in improvement in the intervention group
compared with the control (Table 2).

Association of neural targets and self-reports
In the intervention group, an increase in the activation of the right
dlPFC was positively correlated with an increased self-reported
SPSI-R score indicating improved problem-solving ability (r= 0.4,
p= 0.02), and negatively associated with the self-reported
avoidant score indicating reduced avoidance (r=−0.5, p= 0.01),
from baseline to 16 weeks. In the waitlist control group, the right
dlPFC was negatively correlated with dysfunctional attitudes score
(r=−0.5, p= 0.04). Moreover, associations were in the opposite
direction in the control group for several of the other considered
scales, although they were not statistically significant: negative
correlation with the self-reported SPSI-R score (r=−0.5,
p= 0.050), and positive correlation with the self-reported avoidant
score (r= 0.3, p= 0.20) (see Supplementary Materials, Section G,
Tables S3 and S4; Figure S3).

DISCUSSION
A virtual voice-based coach intervention showed meaningful
changes in a subset of select neural targets, with a decrease in the
activation of the primary neural target related to cognitive control
—the right dlPFC—in the intervention group compared with the
control. Related self-reported rational problem-solving and
impulsive/carelessness scores also showed meaningful improve-
ments with Lumen. The change in the right dlPFC activation was
also correlated positively with self-reported problem-solving
ability scores and negatively with the avoidance scores in the
Lumen group. Moreover, participants in the Lumen intervention
group showed improvements in both depression and anxiety
symptoms as well as total psychological distress at 16 weeks,
compared with the waitlist control group. The between-group
differences in the HADS-D and HADS-A scores were consistently
greater than clinically important differences defined as 1.5–1.7 in
prior studies [39, 40]. These treatment effects were moderated by

participant sex, race/ethnicity, and educational status. These
findings offer a consistent signal and support the pragmatic
viability of Lumen as a promising digital intervention to address
mild-to-moderate depression and/or anxiety.
To the best of our knowledge, this is the first clinical trial of a

virtual voice-based coach for behavioral therapy, coupled with
neuroimaging, that was delivered using a consumer-based voice
platform (i.e., Amazon’s Alexa). The demonstration of neural target
engagement for cognitive control and improved clinical outcomes
is promising and offers considerable opportunity for delivering
PST. Moreover, more than 80% of the Lumen participants
completed all 8 PST sessions, suggesting high feasibility and
acceptability among a highly diverse group of participants.
The neural mechanistic findings supplement the validated self-

report clinical outcomes, and may help elucidate the theory-based
therapeutic underpinnings of this novel form of PST delivery.
Meaningful decrease in the activation of right dlPFC in the Lumen
group is consistent with other studies suggesting that right
hemisphere hyperactivation is associated with depressive dis-
orders [41]. Furthermore, the right dlPFC is frequently used as a
target for low-frequency inhibitory repetitive transcranial mag-
netic stimulation, suggesting that a reduction of activity in this
region has an antidepressant effect [42]. The association of right
dlPFC activation with increased problem-solving skills and
decreased avoidant scores in the intervention group may
represent efficient processing by a key node involved in the
cognitive control circuit. This finding, in combination with our
prior work from the ENGAGE-2 study [6], suggests that the
malleability of dlPFC activity may serve as a prognostic biomarker
for identifying patients who would likely respond to this type of
intervention.
The presence of moderators in our models suggests that

women, minorities, those college or less educated or those with
lower digital health literacy may likely benefit more from using
Lumen. Among marginalized groups with lower resources and
limited access to mental health services, Lumen offers a potential
resource for easy and on-demand access. This is especially the
case, given the significant proliferation of mobile phones with
voice applications. A recent qualitative study [43] found similar
results, showing the potential benefits and opportunities for using
virtual technology for health management among Black men,
further emphasizing the role of digital tools among minority
populations.
There is considerable published literature and on-going

research on the use of text-based applications (“chatbots”) for
mental health support [44, 45]; however, a recent meta-analysis
showed that text-based chatbots had mixed results [46]. In this

Table 3. Treatment effects on depression and anxiety symptoms.

Unadjusted mean ± SD Model-based mean difference (95%CI)* Cohen’s d

Symptom Intervention Control P value

HADS_Depressona

baseline 7.62 ± 2.89 6.67 ± 3.15 0.24

change at 16 weeks −1.85 ± 4.00 0.10 ± 3.95 0.075 −1.33(−3.26, 0.6) 0.49

HADS_Anxietya

baseline 10.98 ± 2.72 9.90 ± 4.15 0.29

change at 16 weeks −2.25 ± 4.48 0.14 ± 5.11 0.064 −1.58(−3.82, 0.66) 0.51

HADS_Totalb

baseline 18.60 ± 4.30 16.57 ± 6.60 0.21

change at 16 weeks −4.10 ± 7.53 0.24 ± 8.49 0.045 −2.89(−6.76, 0.99) 0.55
*Regression model adjusted for baseline value of the interest.
aScores range from 0 to 21, with 0–7=Normal; 8–10= Borderline abnormal (borderline case); 11–21= Abnormal (case).
bScores range from 0 to 42.
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context, our study using a virtual voice-based coach offers a novel
mental health therapy delivery mechanism. The absence of full-
fledged RCTs of voice-based applications is likely due to the
challenges high-quality natural language understanding on these
platforms. However, it must be stated that these platforms have
had greater success in directed and specific conversations utilizing
the extensive modern machine learning and natural language
processing algorithms. As such, Lumen was designed to string
together multiple short, directed conversations (e.g., “what is your
goal?”) that reflect the therapeutic approach underlying the
delivery of PST [19].
This study has several limitations. First, this was a pilot RCT with

a small study sample, among those with mild-to-moderate
depression and/or anxiety, increasing the probability of false
discovery and failure to detect uncommon problems or adverse
events. Nonetheless, this study provides the foundational
evidence for a planned confirmatory study (NCT05603923).
Second, task-based neuroimaging studies have had varying
within-subjects reliability, which may have reduced the capacity
to detect changes in certain neural targets. Future studies will also
complement data-driven approaches such as whole-brain network
analysis. Third, the comparison group did not receive any
treatment, and it remains unclear how Lumen differs from PST
delivered by human coaches. Fourth, we considered several
moderator variables in our analysis; given the small sample size
the findings should be considered preliminary. Finally, although
education and digital literacy were moderating variables, the
overall sample was well-educated and digitally literate.
In summary, this pilot RCT provides preliminary evidence that a

virtual voice-based coach may represent an alternative option of
PST delivery for managing mild-to-moderate depression and
anxiety. This innovative approach may reduce barriers to mental
health care access, particularly for vulnerable populations.
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