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Abstract

Network diffusion models are a common and powerful way to study the propagation of information through a complex
system and they offer straightforward approaches for studying multimodal brain network data. We developed an analytic
framework to identify brain subnetworks with perturbed information diffusion capacity using the structural basis that best
maps to resting state functional connectivity and applied it towards a heterogeneous dataset of internalizing
psychopathologies (IPs), a set of psychiatric conditions in which similar brain network deficits are found across the swath
of the disorders, but a unifying neuropathological substrate for transdiagnostic symptom expression is currently unknown.
This research provides preliminary evidence of a transdiagnostic brain subnetwork deficit characterized by information
diffusion impairment of the right area 8BM, a key brain region involved in organizing a broad spectrum of cognitive tasks,
which may underlie previously reported dysfunction of multiple brain circuits in the IPs. We also demonstrate that models
of neuromodulation involving targeting this brain region normalize IP diffusion dynamics towards those of healthy
controls. These analyses provide a framework for multimodal methods that identify both brain subnetworks with disrupted
information diffusion and potential targets of these subnetworks for therapeutic neuromodulatory intervention based on
previously well-characterized methodology.
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Introduction
The dynamics arising from the interaction of individual
elements of a complex system is commonly investigated by
representing such a system as a network or graph (Bullmore
and Sporns 2009). This has been applied extensively towards
studying neural connectivity, where brain regions (represented
by nodes) and the links between them (represented by edges)
define a brain network, or connectome (Sporns 2010, 2018).
As in any network, the underlying structure of connectivity
constrains the functions and processes that take place within it

(Wang et al. 2017). Indeed, the mechanisms of propagation of
and neural response to brain pathologies have been closely tied
to network topology (Fornito et al. 2015).

A number of studies have found that the basis formed by
the anatomic structure of the brain and the patterns of observed
spatiotemporal neural activity are intimately related (Abdelnour
et al. 2014; Atasoy et al. 2016; Abdelnour et al. 2018; Deslauriers–
Gauthier et al. 2020). Many of these investigations use a network
diffusion model to study the propagation of neural impulses,
or information (given by functional connectivity), throughout
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the structure formed by the white matter tracts of the brain.
These so-called network diffusion-based approaches all utilize
the properties of the structural graph Laplacian, which encodes
how a diffusive process spreads throughout a network over time
(Chung and Graham 1997). The basis of diffusion given by the
graph Laplacian, or its eigenmodes, can thus be used to model
the flow of neural information (Xiao et al. 2010), and has been
shown to play important roles in healthy brain network orga-
nization (Wang et al. 2017). More specifically, such an approach
was used successfully to demonstrate that resting state func-
tional connectivity is predictable from white matter structural
eigenmodes (Abdelnour et al. 2014, 2018). Furthermore, resting
state networks were found to closely match spatial patterns
of structural eigenmodes (Atasoy et al. 2016). Of note, many
other approaches for investigating this interplay have been stud-
ied, including models based on epidemic-spreading (Stam et al.
2016), threshold models (Mišić et al. 2015), and neural mass
models (Honey et al. 2009) (for a review, see Avena-Koenigsberger
et al. 2018).

Network diffusion-based methods have also been applied
towards investigating the pathophysiology of neurological dis-
eases. For example, Raj and colleagues (2012) show that white
matter structural eigenmodes closely resemble known patterns
of dementia and correlate strongly with regional atrophy. A
closely related methodology to that of studying structural eigen-
modes is using the graph Laplacian-derived heat kernel of brain
networks, a matrix which encodes how much information is
transferred between every pair of network nodes after a given
time, or diffusion depth. Heat kernel methods have been used to
characterize perturbations in brain network information trans-
fer in autism (Schirmer and Chung 2019) and to predict future
adverse motor function resulting from premature birth using
white matter structural connectomes (Chung et al. 2016).

In the context of psychiatric conditions, the application of
methods that integrate multimodal perspectives in their analyt-
ical approaches has great potential to elucidate the distributed
perturbation of neurocircuitry that underlie the complex cogni-
tive and behavioral disruption found in patients suffering from
these disorders. This may hold particularly true for the inter-
nalizing psychopathologies (IPs), including mood (e.g., major
depressive disorder [MDD], dysthymia) and anxiety (e.g., panic
disorder [PD], social anxiety disorder [SAD], generalized anxiety
disorder [GAD]) disorders. Many previous neuroimaging studies
have been conducted on IPs, however, most of which use uni-
modal data analysis. Importantly, findings about potential neu-
ropathological substrates are more often overlapping between
the IPs than distinct to a specific IP. In addition, IPs, as tradi-
tionally categorized, are often comorbid with one another and
present heterogeneously with a spectrum of related symptoms
and disruptions to emotion regulation and negative valence
system (NVS) processes (Kessler et al. 2005; Moser et al. 2015;
Cecilione et al. 2018). Furthermore, the available first-line treat-
ments for the IPs, either cognitive behavioral therapy (CBT) or
selective serotonin reuptake inhibitors (SSRI), are equally effec-
tive across the swath of the disorders (Dunlop et al. 2012). Many
studies have concluded that similar structural and functional
brain networks involving regions commonly implicated in the
expression of fear, anxiety, negative affect and other NVS fea-
tures are dysfunctional in these disorders (Etkin and Wager 2007;
Hamilton et al. 2012; Korgaonkar et al. 2014). In addition, previ-
ous findings also implicate the disruption of similar canonical
resting state networks (RSNs), such as the default mode network
(DMN), in both depression and anxiety using both structural and

functional neuroimaging (Sheline et al. 2009; Müller et al. 2013;
Tao et al. 2015; Kim and Yoon 2018; Liu et al. 2020). To address
this pattern of findings, the National Institute of Mental Health’s
Research Domain Criteria (RDoC) initiative was developed (Insel
et al. 2010; Cuthbert 2014) in order to reorient the study of psy-
chiatric disorders away from traditional diagnostic categories
and towards that of data-driven approaches such as identi-
fying transdiagnostic cognitive domain disruptions, biomark-
ers of treatment response and targets for neuromodulatory
intervention.

In line with the aims set forth by this initiative, we
study a dataset from an RDoC clinical trial consisting of
diffusion weighted (DWI) and resting state-functional (rs-fMRI)
neuroimaging scans of a treatment naive, heterogeneous IP
patient (PT) cohort and age and sex matched healthy controls
(HC). PTs were then randomized to either 12 weeks of SSRI
or CBT and completed Inventory of Depression and Anxiety
Symptoms (IDAS-II) (Watson et al. 2012) self-reports pre- (Pre)
and post-treatment (Post) to assess transdiagnostic dimensions
of symptom burden. Several previous analyses have been
conducted on this dataset but they are unimodal and have a
hypothesis-driven focus on a priori brain region, often studied
in association with specific task-based measures of NVS
subsystems (Burkhouse, Gorka, et al. 2018a; Gorka et al. 2019;
Radoman et al. 2019; Burkhouse et al. 2020; Klumpp et al. 2020;
Thomas et al. 2020).

Because IPs share similarly dysfunctional brain networks
and respond to similar treatments, we hypothesize that there
exist pathophysiological features common to all IPs that result
in impaired emotion regulation and the subsequent heteroge-
neous expression of IP symptoms. In this paper we ask 1) can
the presence of such unifying perturbations can be identified by
incorporating both structural and functional connectivity data,
2) do these perturbations predict response to CBT and/or SSRI
treatment and 3) can we identify candidate brain region as tar-
gets of neuromodulatory intervention to normalize connectivity
dynamics to those found in healthy controls? To answer these
questions, we use a multimodal data-driven analysis based
on network diffusion models. In this approach, the diffusion
basis of the structural connectome, given by the eigenmodes
(eigenvector-eigenvalue pairs) of the normalized graph Lapla-
cian, is central to the methodology. The eigenmode basis of a
network encodes its information diffusion properties, and the
eigenmodes of a graph, scaled exponentially by the diffusion
depth or time scale allowed for diffusion to occur, represent
an embedding of nodes such that their pairwise Euclidean dis-
tance in the embedding is inversely proportional to the ability
for information to diffuse between nodes at the given diffu-
sion depth (Xiao et al. 2005, 2010; Chung et al. 2016). Next,
the mapping between each subject’s structural and functional
network that minimizes the error between the empirical and
estimated functional connectivity is computed by optimizing
over diffusion depth parameters as described by Abdelnour and
colleagues (2018). We then define a novel representation of
structural connectivity, the structural diffusion distance (SDD)
connectome, where the edge weights between each brain net-
work node are given by the pairwise Euclidean distance from
the diffusion embedding at the optimal time scale that best
maps to empirical rs-fMRI activity. We chose such a model for
multimodal incorporation as it has both been well character-
ized in the study of structural to functional mappings in brain
networks (Abdelnour et al. 2018) and allows for the computa-
tion of the diffusion-based network embedding given by the
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structural eigenbasis that most accurately underlies empirical
functional connectivity. Thus, we achieve correspondence to
functional connectivity in SDD connectomes by computing the
embedding at the optimal diffusion depth, βt, for each subject
(see Methods section for details). Furthermore, a network dif-
fusion model easily allows for the simulation of information
flowing through the network. Simple mathematical properties
of the graph Laplacian-derived heat kernel corresponding to
the network embedding can be exploited to identify network
nodes to supplement with additional “heat”supplement in order
to normalize deficient heat transfer throughout a PT subnet-
work towards the desired diffusion dynamics of a target (mean
HC) subnetwork. Our study applies this analytic framework to
provide evidence for transdiagnostic IP subnetwork disruption
and neuromodulation treatment targets, opening up application
of multimodal network diffusion-based methods towards other
brain disorders.

Materials and Methods
Clinical Trial and Research Participants

Subjects were recruited from the greater Chicago area through
advertisements and through University of Illinois at Chicago
(UIC) outpatient clinics and counseling centers as part of a larger
Research Domain Criteria (RDoC; Cuthbert 2014) investigation
on predictors of IP treatment outcomes (ClinicalTrials.gov iden-
tifier: NCT01903447). A heterogeneous study population was
recruited in order to obtain a sample with a broad range of symp-
tom severity and functioning. Details regarding inclusion/ex-
clusion criteria, participant recruitment, clinical characteristics
and treatment have been previously described (Gorka et al.
2019). In brief, this study was approved by the UIC Institutional
Review Board, and written informed consent was obtained for
each participant. The inclusion criteria for subjects were age
between 18 and 65 years, and the need for randomization to
12 weeks of treatment with SSRI or CBT, as determined by a
consensus panel consisting of at least three trained clinicians
or study staff. Subjects were excluded from the study if they
have a history of current or past manic/hypomanic episodes
or psychotic symptoms, active suicidal ideation, presence of
contraindications or history of SSRI resistance (no response to
>2 SSRIs despite adequate duration and dose), psychopathology
not appropriate for the treatment algorithm, or current cognitive
dysfunction or impairment. The SCID-5 (First et al. 2015) was
used to determine current and lifetime Axis I diagnoses. The
study was a parallel group randomized control trial with 1:1 allo-
cation ratio to either 12 weeks of CBT or SSRI. For the SSRI cohort,
PTs were administered one of five drugs (sertraline, fluoxetine,
paroxetine, escitalopram, or citalopram) with a flexible dosing
schedule with a goal of obtaining target dose by 8 weeks. SSRI
PTs met at 0, 2, 4, 8, and 12 weeks with their study psychiatrist
for medication management. For the CBT cohort, PTs received
12 once-weekly 60-min sessions led by a PhD-level clinical psy-
chologist. CBT procedures were based on the PT’s principal
diagnosis and predominant symptoms (Burkhouse et al. 2020).
Each participant was scanned at enrollment and IP subject scans
were acquired before treatment was administered.

At the time of enrollment (Pre) and after 12 weeks of treat-
ment (Post), severity of IP symptoms was assessed in all sub-
jects using the Inventory of Depression and Anxiety Symp-
toms (IDAS-II) (Watson et al. 2012). Subjects responded to each
of the 99 items in this inventory using a 5-point Likert-type

scale ranging from 1 (not at all) to 5 (extremely), yielding 17
empirically derived and symptom-specific scales (Suicidality,
Lassitude, Insomnia, Appetite Loss, Appetite Gain, Ill-Temper,
Well-Being, Panic, Social Anxiety, Traumatic Intrusions, Trau-
matic Avoidance, Mania, Euphoria, Claustrophobia, Checking,
Ordering, Cleaning, General Depression and Dysphoria). As we
are interested in transdiagnostic NVS construct disruptions in
IPs, we use the IDAS-II Panic and Depression subscales, as these
scales have been shown to map well to “fear” and “distress”
dimensions, respectively, which is a previously used approach
for broadly dividing and assessing these symptom domains
(Ofrat and Krueger 2012; Watson et al. 2012; Radoman et al. 2019).

Image Acquisition and Processing

All imaging was acquired at the UIC Center for Magnetic Res-
onance Research using a 3 Tesla GE Discovery MR750 System
(Milwaukee, WI) with an 8-channel head coil.

Anatomic MRI
High resolution 1 mm isotropic voxel resolution T1-weighted
(T1w) images were obtained using a 3D axial FSPGR BRAVO
imaging sequence with the following parameters: slice thick-
ness = 1 mm, in-plane resolution = 1 mm, repetition time
(TR) = 9.3 ms, echo time (TE) = 3.8 ms, inversion time (TI) = 450 ms,
flip angle = 13◦, field of view (FOV) = 220 × 220 mm.

Diffusion Weighted MRI
Diffusion weighted images (DWI) were obtained using a 2D Spin
Echo imaging sequence with the following parameters: in-plane
resolution = 0.9375 mm, slice thickness = 2.5 mm, TR = 5800 ms,
TE = 96 ms, 52 slices, FOV = 240 × 240 mm, b-value = 1000 s/mm2.
Two sets of scans with 4 b0 images and 32 diffusion sampling
directions each were obtained with opposite phase-encoding
directions. DWI data were then preprocessed using tools from
the FMRIB Software Library (FSL; Smith et al. 2004; Jenkinson
et al. 2012), detailed below. From these pairs of images with
reversed phase-encoding blips the susceptibility-induced off-
resonance field was estimated using a method similar to that
described in Andersson et al. (2003) as implemented in FSL’s
top-up tool. The resulting susceptibility field was used with
FSL’s eddy_correct tool (Andersson and Sotiropoulos 2016) to
simultaneously correct DWI volumes for subject movements
and susceptibility- and eddy current-induced distortions.

DWI data was resampled to 2-mm isotropic resolution and
reconstructed with DSI Studio software (http://dsi-studio.labso
lver.org/) using q-space diffeomorphic reconstruction (QSDR;
Yeh and Tseng 2011). First, QSDR performs reconstruction in
native space where the quantitative anisotropy (QA) for each
voxel is computed. These QA values are used to warp DWI to
a high angular resolution template in Montreal Neurological
Institute (MNI) space using a nonlinear registration algorithm
similar to that described in Friston (1994). QSDR was chosen over
diffusion tensor-based approached because the reconstructed
spin distribution functions can resolve crossing, branching, and
merging fiber populations (Yeh and Tseng 2011). A deterministic
fiber tracking algorithm (Yeh et al. 2013) was used with whole
brain seeding with a total of 10 000 000 seeds, an angular of 70
degrees, step size of 1 mm and quantitative anisotropy thresh-
old of 0.1. The fiber trajectories were smoothed by averaging
the propagation direction with 10% of the previous direction.
Tracks with length shorter than 10 or longer than 300 mm were
discarded.

ClinicalTrials.gov
http://dsi-studio.labsolver.org/
http://dsi-studio.labsolver.org/


1826 Cerebral Cortex, 2022, Vol. 32, No. 9

Functional MRI
Whole-brain blood-oxygen-level dependent (BOLD) functional
images were acquired using a T2∗ weighted gradient-echo
echo-planar imaging sequence optimized to reduced suscep-
tibility artifacts with the following parameters: TR = 2000 ms,
TE = 25 ms, flip angle = 82◦, FOV = 220 × 220 mm, acquisition
matrix 64 × 64, slice thickness = 3 mm, gap = 0 mm, 44 axial
slices, 180 volumes per run. For anatomical localization, a high-
resolution T1w structural scan was also acquired (described
above). During this scan, subjects were asked to view a fixation
cross on a blank background for 8 min. Subjects were instructed
to keep their eyes open and focused on the cross, and to try
not to think of anything in particular for the duration of the
scan. Functional MRI (fMRI) data preprocessing and analysis
were performed using the CONN Toolbox (www.nitrc.org/proje
cts/conn; Whitfield-Gabrieli and Nieto-Castanon 2012), which
employs procedures from the Statistical Parametric Mapping
software (SPM12; Wellcome Trust Center for Neuroimaging,
London, UK), using the standard preprocessing and denoising
pipelines as detailed in Nieto-Castanon (2020) and described as
follows.

1) fMRI images were first coregistered to the first volume
of the series as reference using b-spline interpolation and
susceptibility distortion-by-motion interactions were corrected
by resampling the data to match the estimated deformation field
of the reference volume (Andersson et al. 2001). 2) Slice-timing
correction was performed by time-shifting and resampling
data using sinc-interpolation to the middle of each acquisition
time (Henson et al. 1999). 3) The effects of outlier scan-related
nuisance (“scrubbing”) covariates were identified by quantifying
frame-wise displacement and global BOLD signal changes
(Power et al. 2014). Images with displacement greater than
0.9 mm and signal change greater than 5 standard deviations
from the mean were labeled as outliers. 4) fMRI images were
then co-registered to the T1w structural imaging data using
an affine transformation as described in Collignon et al. (1995),
Studholme et al. (1998). T1w images were next registered to
MNI space and segmented into gray matter, white matter and
cerebrospinal fluid (CSF) tissue classes using a non-linear spatial
transformation as described in Ashburner and Friston (2005).
The resulting transformation was next used to warp the native
structural registered functional volumes to MNI space. T1w and
functional images were resampled to 1 and 2 mm isotropic
voxel resolution, respectively. 5) Functional data were then
smoothed using spatial convolution with a Gaussian kernel
of 8 mm full width half maximum (FWHM) in order to increase
BOLD signal-to-noise ratio and reduce the residual effects of
inter-subject anatomic variability (Nieto-Castanon 2020). 6)
Functional data were then corrected for confounding effects
by regressing out components derived from estimated subject
motion parameters, outlier images (“scrubbing”), white matter
and CSF BOLD signal and estimated physiological noise using
the aCompCor and tCompCor methods in the CONN toolbox
(Behzadi et al. 2007; Chai et al. 2012). The mean global BOLD
signal was not regressed out at it can result in artificial bias
and diminution of meaningful neural signal (Murphy et al. 2009;
Chai et al. 2012). 7) A temporal band-pass filter was applied to
remove BOLD signal below 0.008 Hz or above 0.09 Hz in order to
capture slow-frequency neural fluctuations while minimizing
the presence of physiological and motion related noise in the
functional data (Nieto-Castanon 2020). Filtering was applied
after regressing out confounding effects to avoid frequency
mismatch in the resulting denoised data (Hallquist et al. 2013).

Defining Regions of Interest

Cortical areas were defined by the HCP-MMP1.0 parcellation
comprising of 360 (180 per hemisphere) regions of interest
(ROIs), which localizes brain regions on inflated brain surfaces
(Glasser et al. 2016). Because the DWI reconstruction and
tractography methods used in this manuscript require a
parcellation in 3D coordinate space, a surface to volume
projected version of the HCP-MMP1.0 atlas registered to MNI
space and corrected for errors arising from surface-voxel
misalignment (as implemented in DSI Studio) was used for
the present analyses, as done in previous studies (Wu et al.
2019; Jitsuishi et al. 2020; Ghulam-Jelani et al. 2021; Huang
et al. 2021; Jitsuishi and Yamaguchi 2021). However, it has been
shown that using volume-based HCP-MMP1.0 parcellations
have higher cortical areal localization uncertainty than surface-
based approaches (Coalson et al. 2018). As such, we limit the
investigation of individual cortical areas to a much coarser
parcellation scheme (n = 44 total ROIs, 22 per hemisphere) by
aggregating the 360 original ROIs by their cortical region label
as defined by the HCP-MMP1.0 atlas (Glasser et al. 2016). The
exception to this rule is with the right area 8BM which was
found to be the hub of diffusion impairment of the subnetwork
discovered in this study. To verify the localization of the right
area 8BM volumetric parcel, we determined the percentage of
voxels that are labeled by ROIs from derived from individual
subject surface-registered HCP-MMP1.0 parcellations mapped to
MNI volumetric space using tools from Connectome Workbench
(Glasser et al. 2013) and DSI Studio software. In doing this, we
found 81.5% of the right area 8BM voxels to be correctly mapped
(see Supplementary Material for details Figure S2).

Structural and Functional Connectivity Matrices

Using the 360 ROIs from the HCP-MMP1.0 parcellation as
described above, 360 × 360 matrices encoding the connectivity
between each pair of brain regions were created for each subject.
For DWI structural data, each connection was given by the count
of reconstructed white matter tracts, normalized by the median
tract length, between ROIs. Functional connectivity was defined
by as the r statistic from pairwise Pearson correlations on the
mean BOLD time series data of voxels within each ROI.

Network Notation

A brain network may be represented as a graph with nodes being
gray matter regions and edges being the connection between
these regions. For structural connectomes, edge weights are
assigned based on the number of fiber counts between nodes,
normalized by the median fiber length. For functional connec-
tomes, edge weights are the Pearson correlation r of the time
series of BOLD signals between nodes. Formally, a graph is
defined as G = (V, E) where V is the set of nodes of size N and E
is the set of edges linking nodes in V. In addition, w : E → R, is
a weight function that assigns weights to the E according to the
modality of imaging from which the brain graph is constructed.
G can then be encoded as an adjacency matrix, A ∈ R

NxN, where

Ai,j =
{

wi,j if
(
i, j

) ∈ E
0 otherwise

each entry Ai,j corresponds to the connection weight between
nodes vi and vj. The diagonal strength matrix is then defined as

Di,i = ∑N
j=1 Ai,j, which can be used to define the graph Laplacian

www.nitrc.org/projects/conn
www.nitrc.org/projects/conn
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab314#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab314#supplementary-data
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matrix, L = D−A, and, the normalized graph Laplacian is defined

asL = D
−1
2 LD

−1
2 . The eigendecomposition of the graph Laplacian

is given by L = UΛUT, where U is a matrix with columns as
eigenvectors and Λ is the diagonal matrix of eigenvalues. The
spectral properties of the normalized graph Laplacian have been
extensively studied (Chung and Graham 1997).

Diffusion in Networks

Diffusion in networks over time can be determined analytically
using the heat equation given by

δH(t)
δt

= −LH(t),

where H(t) is the heat kernel and fundamental solution to the
heat equation, and t is time. The heat kernal can be under-
stood as describing the flow of information between all nodes
of a network over time, taking into account all possible path-
ways of information flow into and out of all nodes in the
network. Throughout this manuscript, heat or information with
be used interchangeably in this context. The heat kernel is then
given by

H(t) = e−Lt,

which can then be used to solve for the heat distribution on
network nodes, h(t) after time = t, given an initial condition h(0):

h(t) = H(t)h(0)

The product of an element of the heat kernel and initial
condition vector,H(t)i,j∗h(0)i, then represents the amount of heat
at the jth node at time = t that has diffused from the ith node.
The heat kernel can be computed as a sum of the outer product
of eigenvectors of the graph Laplacian, scaled by exponentiating
the corresponding eigenvalues with time:

H(t) =
N∑

i=1

uiu
T
i e−λi t = Ue−ΛtUT

Structure to Function Mapping

In this study, we use the methods proposed by Abdelnour and
colleagues (2014), Abdelnour and colleagues (2018) to identify
the graph diffusion-based mapping of functional connectiv-
ity from the structural basis. Briefly, the observed functional
activity in rs-fMRI, i.e., the transfer of information from brain
region (node) i to region j as measured by pairwise correlation of
temporal BOLD signals, can modeled by first order diffusion-like
dynamics given by:

δhi(t)
δt

= β

⎛
⎝D

−1
2

i,i

N∑
j

Ai,jD
−1
2

j,j hj(t) − hi(t)

⎞
⎠ ,

where β is a diffusion constant. This extends to the entire
network then as the heat equation, δh(t)

δt = −βLh(t). The mapping
from the structural diffusion dynamics, yielding the estimated
functional connectome, Cest,is then given by Abdelnour et al.
(2014)

Fest = e−βLt

and has been updated as (Abdelnour et al. 2018)

Fest = ae−βLt + bI = a

⎛
⎝ N∑

i

uiu
T
i e−βλi t

⎞
⎠ + bI,

where a and b are additional model parameters and I is the iden-
tity matrix. Note that the summation allows for the exclusion of
eigenvector-eigenvalue pairs. As in Abdelnour et al. (2018), we
leave out the first eigenvector with corresponding zero valued
eigenvalue, as it largely represents uniform background connec-
tivity (captured by b parameter above) and is typically regressed
out of rs-fMRI data. The model is then fit by minimizing the nor-
malized predictive error with respect to the model parameters
given by:

minimize
a,b,βt

∥∥Fest
(
a, b, βt

) − F
∥∥2

2

‖F‖2
2

,

where F is the empirical rs-fMRI connectivity matrix. This
model is fit for each individual to obtain subject specific βt
parameters, used in the diffusion-based embedding discussed
below.

Diffusion-Based Network Embedding

The embedding of nodes based on the diffusion properties of
a graph has been studied extensively for dimensionality reduc-
tion and clustering of multi-dimensional data (Ng et al. 2002;
Belkin and Niyogi 2003; Luo et al. 2003). These approaches center
around the embedding of network vertices via the eigenvec-
tors of the graph Laplacian. Each element of an eigenvector
corresponds to the coordinate of the corresponding node such
that nodes that are closer together by geodesic distance on
the underlying graph or manifold have more similar coordinate
values, i.e., are closer together in Euclidean distance, in the
embedding. A subset of these eigenvectors of size k = 1, 2, . . . , N
can then be used to embed nodes in R

k. In the context of this
manuscript, then, brain nodes that are able to more efficiently
pass information between one another are embedded closer
together via the Laplacian eigenmodes of a brain network (Wang
et al. 2017).

To compute the temporally dependent diffusion-based
embedding for a network, we follow the methods discussed
by Xiao and colleagues, where node coordinates are obtained
from the Young-Householder decomposition of the heat kernel
(Xiao et al. 2005; Xiao et al. 2010). The embedding matrix,
Y = (y1|y2| . . . |YN), with columns as embedding coordinate
vectors for network nodes can determined with the heat kernel
by H(t) = YTY. The Euclidean distance between nodes i and j is
then

dE [i, j] =
√√√√ N∑

k

e−λi t
(
uk [i] − uk [j]

) =
√(

yi − yj

)T (
yi − yj

)

where the distance in each dimension is scaled by exponentiat-
ing the product of the corresponding eigenvalue and diffusion
time, t. A pairwise Euclidean distance matrix, D, of embedded
nodes is computed for each subject with the time parameter
βt obtained via the structure to function mapping as described
above. This provides a newly defined structural connectome
where edges are distances in the embedding space spanned
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by the eigenvectors of the graph Laplacian, and the scale of
distance in each embedding dimension is dependent on the time
parameter, βt, for each subject:

SDD [i, j] =
√√√√ N∑

k

e−λiβt
(
uk [i] − uk [j]

)

Subnetwork Identification

The structural diffusion distance (SDD) connectome edges
then represent the distance between brain regions in diffusion
embedding at the diffusion depth that best represents empirical
resting-state functional connectivity. Many previous findings
from studies of IPs implicate perturbations in resting state
functional connectivity, especially within the DMN, which is
defined by activity at rest. As such, SDD connectomes then
used for further analysis to identify structural subnetworks
with aberrant diffusion characteristics pertinent to rs-fMRI
dynamics using the Network-based Statistic (NBS) algorithm
(Zalesky et al. 2010). Briefly, NBS is carried out by computing
a t-statistic at each network edge, applying a pre-determined
threshold to the resulting t-statistics and determining the
connected components formed by supra-threshold edges. To
determine the significance of each identified subnetwork, the
size of each component is compared to a null distribution of
maximum sized connected components obtained by shuffling
group labels for t-statistic calculation. NBS was carried out using
SDD connectomes in HC versus PT at baseline, using a left
sided t-test with t-statistic thresholds of t = {3.0, 3.5, 4.0, 4.5}.
In doing this, a subnetwork, S ⊂ G, where G is the full brain
network graph, with significantly greater embedding distances,
or significantly decreased diffusion capacity, in PT relative to
HC was.

NBS Subnetwork Hubs

Hub node identification for brain regions within the significant
NBS subnetwork was performed using edges from both the SDD
and standard fiber count structural connectomes, and hub or
centrality metric values were then averaged by group. For SDD
connectomes, strength, or weighted degree, strSDD(n), for the ith
node, ni, in S is defined as the sum of all edge weights (distances)
that are within the identified subnetwork, S, i.e.,

strSDD (ni) =
∑
j∈S

SDD [i, j]

A high strength value would then indicate that a node has
relatively less diffusion between other nodes in the subnetwork,
thus identifying nodes that may have the greatest diffusion
impairment. For structural connectomes, standard measures
of nodal strength, betweenness centrality, local efficiency and
clustering coefficient (Bullmore and Sporns 2009; Sporns 2018)
were computed on the whole brain network graph and subgraph,
S ⊂ G, for each node in S. For each of the above scenarios,
metrics were also determined by cortical region by averaging
region of interest (ROI) level metrics by their cortex assign-
ment as defined by the HCP-MMP1.0 360-node parcellation
(Glasser et al. 2016).

Heat Kernel Edge-Based Analyses

In order to study more granular characteristics of subnetwork
diffusion, heat kernel values between nodes within the
significant NBS subnetwork were investigated using t-tests
in HC versus PT at baseline. Correlates of baseline symptom
severity (using PT only) of and treatment response (defined

as scalepre−scalepost
scalepre

were found by computing non-parametric

Spearmen rho statistics between symptom scales and heat
kernel values. As above, where cortex-averaged metrics were
computed, heat kernel edge-based analyses were conducted
cortex-averaged heat kernels in order to simplify interpretation
and reduce the number of mass univariate tests performed.
To further focus this analysis, statistics other than baseline
t-statistics were only computed on heat kernel values corre-
sponding to pairwise links between SSD hubs (as determined
above) and all other subnetwork nodes. P-values for all statistics
were corrected for multiple comparisons using false discovery
rate correction (FDR; Benjamini and Hochberg 1995).

Subnetwork Targets for Supplemental Heat

To identify potential brain regions for neuromodulatory treat-
ment, we model a brain subnetwork receiving supplemental
heat by simply adding a heat kernel modifying matrix, whose
rows are made by repeating rows of the original heat kernel, to
the original heat kernel. As discussed previously, the product
of an entry of the heat kernel matrix, H(t)[i, j], and the heat
at node i at time t = 0, h(0)i, indicates the amount of heat
transferred from node i to node j at time t. The product of
the ith row of the heat kernel matrix, H(t)[i, :], and h(0)i then
yields the distribution of heat values for each jth node in the
network. If the ith node of a network is supplied with sup-
plemental heat independent of the initial distribution of heat
on the network, h(0), the network heat distribution at time t is
given by

h(t) = H(t)h(0) + H(t)h

where h is a vector of all zeros except for the ith whose value
is the amount of supplemental heat at node i. Using this model,
we can then identify both a node and supplemental heat value
that may best “normalize” a heat kernel representing impaired
diffusion processes to a reference heat kernel. In this study,
we use the mean HC heat kernel matrix as the reference and
identify patient-specific nodes and supplemental heat values
for optimal correction of the diffusion dynamics encoded in the
heat kernel, described as follows.

Given the mean HC heat kernel, HHC, and the kth patient’s
heat kernel, Hk

PT, we compute the residual heat kernel matrix

as Hk = HHC − Hk
PT. For the ith node in the subnetwork, we

construct the heat kernel modifier matrix as Mk
i = 1(Hk

PT[i, :])
T

as the outer product of the all ones vector and the ith row of
the kth patient’s heat kernel matrix. In order to find the optimal
supplementary heat value, ck

i for a given node and subject, we
minimize the following objective function.

minimize
ck
i

∣∣∣∣
∣∣∣∣Hk

i − ck
i Mk

i

∣∣∣∣
∣∣∣∣
2
,
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Table 1 Baseline mean demographics, IDAS-II scales and structure to function mapping (S2F) Pearson r values by split healthy controls (HC)
and patients (PT)

HC PT Statistic

Age (years) 25.0±10.7 28.1 ±8.5 t = −1.36, P = 0.18
Sex (% female) 63.6 68.7 χ2 = 0.01, P = 0.93
IDAS-II depression 26.3 ±3.8 58.0 ±9.8 t = −14.6, P = 7.5e − 25
IDAS-II panic 8.14 ±0.34 13.3 ±4.6 t = −5.18, P = 1.5e − 6
S2F mapping r 0.26 ±0.03 0.25 ±0.03 t = 1.96, P = 0.06

which can be easily solved analytically by

ck
i =

tr
((

Mk
i

)T
Hk

i

)

tr
((

Mk
i

)T
Mk

i

)

where tr(· ) denotes the matrix trace.
It is important to note, that the above model is also con-

strained such that only positive values in the residual matrix are
used for optimization, as this simple network diffusion model
only allows for the addition of heat.

This process is repeated for each unique node-patient pair,
and the mean or patient-specific optimal node and correspond-
ing supplemental heat value can be determined. We have exper-
imentally observed that the minimum error between resid-
ual and heat kernel modifier matrices has very little variation
between brain regions, and we define optimal region as the node
with the lowest value supplemental heat value, such that neu-
romodulatory efficacy could be achieved with lower amounts of
stimulation and thus potentially yield fewer undesired effects.

Visualizing Effects of Heat Supplementation

To assess whether the significant group differences at baseline
between HC and PT heat kernel values are corrected with heat
supplementation, we add the product of the optimal supple-
mental heat value, ck

i , at the ith node, and the heat kernel
modifier matrix, Mk

i to each kth patient’s heat kernel. We then
compute a t-statistic for each heat kernel entry, as discussed
above.

Results
Data analyzed in this study are taken from a previously con-
ducted Research Domain Criteria (RDoC) clinical trial on pre-
dictors of IP treatment outcomes (ClinicalTrials.gov identifier:
NCT01903447) in which PT were randomized to either 12 weeks
cognitive behavioral therapy (CBT) or selective serotonin reup-
take inhibitor (SSRI) treatment. In addition, the patient popu-
lation has heterogeneous clinical presentations and IP comor-
bidity in order to study common pathological features without
regard to traditional diagnostic categories. Baseline rs-fMRI and
DWI scans as well as IDAS-II Panic and Depression scores were
assessed from both HC (n = 22) and PT (n = 65) subjects. The
subset of PT (n = 50 total; n = 28 CBT cohort; n = 22 SSRI cohort)
completed the IDAS-II self-reports following treatment are used
for identifying correlates of treatment response. Of note, there
were no group differences in age or sex between HC and PT.
As expected, baseline IDAS-II Panic and Depression scores were
significantly different between groups at baseline (Table 1).

Figure 1. Visual overview of methodological pipeline for creating structural
diffusion distance (SDD) connectomes using subject-specific optimal diffusion

depths (βt) from the structure-to-function mapping as in Abdelnour et al. (2018)
using subject DTI and rs-fMRI connectomes, respectively. NBS is then applied
to SDD connectomes for identification of subnetworks with aberrant diffusion
properties for subsequent analyses. See Methods section for details.

Figure 1 provides a brief visual overview of the analytic
framework for computing the diffusion-based embeddings and
subsequent structural diffusion distance (SDD) connectomes
used in this study, discussed in detail in the Methods section. We
first compute the structure to function mapping as described in
Abdelnour et al. (2018) for each subject. The fit of the empirical
rs-fMRI connectome to the rs-fMRI connectome estimated from
the DWI structural connectome Laplacian eigenmodes is then
determined by computing the Pearson r statistic between these
adjacency matrices. The mean fit values for HC were slightly
higher than PT (r = 0.26 ± 0.03 and r = 0.25 ± 0.03, respectively,
Table 1) but the difference between their mean values was not
statistically significance via t-test (P = 0.06), indicating that the
relation between resting state functional connectivity and the
structural diffusion basis is likely preserved at the global scale.
Finally, the distance matrix connectomes used for subnetwork
discovery are computed from the structural diffusion basis at
the diffusion depth, βt, which optimally maps structural to
functional connectivity.

ClinicalTrials.gov
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Identification of Diffusion Impaired Subnetwork

After SDD connectomes were computed, the Network-Based
Statistic (NBS) algorithm (Zalesky et al. 2010) was used to dis-
cover subnetworks with altered diffusion properties in PT rel-
ative to HC. NBS was applied with one-sided t-tests used for
edge comparison, over a range thresholds t = {3.0, 3.5, 4.0, 4.5}.
For a t-test contrast (left-sided t-test) of HC < PT, the range
of subnetwork sizes varied greatly as a function of t-statistic
threshold, resulting in subnetworks from 314 to 2 nodes with
thresholds t = 3 and 4.5, respectively. With the threshold of
t = 4 a single significant subnetwork (SN1) consisting of 48
nodes and 73 edges was identified (Fig. 2A) and was chosen for
subsequent analyses because of the biological interpretability of
its size, and for adequate estimated statistical power, 1−β = 0.81,
with a t-statistic threshold of t = 4. Note that because NBS was
conducted on SDD connectomes, edges are pairwise distance
between nodes in the diffusion-based network embedding. This
indicates that SN1 represents a subnetwork whose nodes are
significantly further apart in this diffusion space, i.e., diffusion
of information occurs more slowly between the nodes of SN1
along the edges of SN1 in PT relative to HC. For NBS with a t-test
contrast defined as HC > PT, no significant subnetworks were
found.

To determine the brain regions that are most central to the
diffusion impairment in SN1, we calculated the mean strength,
strSDD, of each node using the SDD values of edges in SN1 (see
Methods section for details). The nodes with the greatest strSDD

values are from brain regions found in the bilateral anterior
cingulate (ACC) and medial prefrontal (mPFC), right inferior
parietal and left insular and frontal opercular cortices (Fig. 2A).
Specifically, the brain region with the greatest average strSDD

value in both HC and PT is the right area 8BM, which has
recently been reported to be a core region of a “multiple demand”
subnetwork that is active during a broad spectrum of tasks and
may play an important role in general cognitive control (Assem
et al. 2020). Additionally, we found that the hubness of area 8BM
was not present in structural connectomes, determined by com-
puting graph theoretical metrics, indicating that the centrality of
this brain region is unique to the SDD representations of brain
networks (Supplementary Fig. 1).

Baseline Heat Kernel Correlates of Symptom Severity
and Treatment Response

To investigate the association of information diffusion between
brain regions of SN1 and clinical scales, we compute heat kernel
matrices which encode the amount of possible heat transferred
between each node after a specified time scale, given by each
subject’s diffusion depth, βt. Each value, i, j, of a heat kernel
matrix then describes pairwise diffusion of information from
the ith to the jth brain network node at the time scale best
associated with functional connectivity. Note that heat kernels
are symmetric matrices (i.e., diffusion from node i to node j
is equivalent to diffusion from node j to node i). Therefore,
when discussing diffusion between brain regions, the order in
which they listen are arbitrary, as network diffusion approaches
model undirected diffusion within a brain network. We took a
hypothesis-driven approach by focusing our correlation analy-
ses on the heat transfer between the bilateral ACC and all other
SN1 cortical regions, as the nodes in these cortical regions are
central to the diffusion impairment of SN1. The heat kernel
values (HKVs) are averaged by cortical region and are then used

for computing Spearman correlations with IDAS-II Depression
and Panic subscales, which map to distress and fear domains,
respectively, based on a previously used approach to broadly
divide and assess symptom domains of IPs (Fig. 3; Ofrat and
Krueger 2012; Radoman et al. 2019). In addition, we use only PT
(n = 65) for these analyses, as mean IDAS-II subscale values
expectedly differ highly significantly between HC and PT, and
correlations would likely be due to group differences. Finally, we
report at most the top three most significant correlations that
survive FDR correction (n = 44 comparisons) in this section of
the manuscript, but all significant correlations are available in
Supplementary Table 1.

First, we determine the HKV correlates of baseline IDAS-II
subscales (Fig. 3A). Heat transfer between the left ACC/mPFC
and insula/frontal opercula (ρ = −0.37, p = 0.003, q = 0.04)
and the right ACC/mPFC and left inferior frontal cortex (ρ =
−0.36, p = 0.004, q = 0.04) was negatively correlated with IDAS-
II Depression scales, indicating that less information diffusion
between these brain regions is associated with higher IDAS-II
Depression values. A positive correlation was found with heat
transfer between the left ACC/mPFC and posterior cingulate
cortex (ρ = 0.39, p = 0.001, q = 0.04). No significant correlations
were found using IDAS-II Panic.

To determine whether baseline HKVs could predict response
to treatment, we determined correlations between heat transfer
and percent improvement in IDAS-II subscales in the subset
of PT (n = 50) that completes post-treatment IDAS-II self-
reports (calculated as pre−post

pre , where pre and post are the IDAS-II
subscales before and after 12 weeks of treatment, respectively).
We first grouped both SSRI and CBT therapy cohorts of PT
together to study common correlates of treatment response.
Significant negative correlations with IDAS-II Depression and
heat transfer between the left ACC/mPFC and inferior frontal
cortex (ρ = −0.45, p = 0.001, q = 0.04), left auditory association
cortex (ρ = −0.42, p = 0.002, q = 0.04) and insula/frontal opercula
(ρ = −0.41, p = 0.003, q = 0.04) were found (Fig. 3B). Similar to
baseline symptom correlations, no significant associations were
found using IDAS-II Panic.

Next, we segregated PT by cohort to investigate treatment
specific HKV predictors of therapeutic response. Interestingly,
in the SSRI cohort (n = 22), significant negative correlations were
found only with IDAS-II Panic improvement and heat transfer
between the left ACC/mPFC and inferior frontal cortex (ρ =
−0.60, p = 0.003, q = 0.15), insula/frontal opercula (ρ = −0.54, p =
0.009, q = 0.17) and right insula/frontal opercula (ρ = −0.53, p =
0.012, q = 0.17) (Fig. 3C). In the CBT cohort (n = 28), we observed
significant negative associations with IDAS-II Depression
percent improvement and heat transfer between the right
ACC/mPFC and superior parietal (ρ = −0.51, p = 0.006, q = 0.09),
inferior parietal (ρ = −0.51, p = 0.006, q = 0.09) and left auditory
association (ρ = −0.50, p = 0.008, q = 0.09) cortices (Fig. 3D).
We also found significant negative correlations with IDAS-II
Panic percent improvement and heat transfer between the right
ACC/mPFC and superior parietal cortex (ρ = −0.55, p = 0.003, q =
0.12) and the left ACC/mPFC and right lateral temporal cortex
(ρ = −0.50, p = 0.007, q = 0.14; Fig. 3E). Interestingly, the brain
regions involved significant correlations of treatment response
in all PT and the SSRI cohort are all Frontal cortical regions
that have been tied to emotion regulation in MDD (Roberts
et al. 2017; Helm et al. 2018; Rolls et al. 2020), while the regions
found with the CBT cohort are members of canonical RSNs.
For example, the inferior parietal and lateral temporal cortices
are members of the default mode network (DMN), while the
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Figure 2. Visualizations of the significant subnetwork (SN1) found via NBS with a t-statistic threshold of t = 4 and contrast of HC < PT, where information diffusion is
impaired in PT relative to HC. (A) Wire and ball plots of SN1 subgraphs of mean SDD connectomes in HC (top row) and PT (bottom row). Nodes indicate brain regions
of SN1, and edges are colored by mean distance in from SDD connectomes (lighter/more yellow indicates greater distance). (B,C) Bar plots of mean strength (str_SDD)

of SN1 nodes B and nodes averaged by cortical region C, as determined by cortex assignment in the HCP-MMP1.0 parcellation (Glasser et al. 2016), calculated using
edges within SN1 and the corresponding edge values of mean SDD connectomes HC (orange bars) and PT (blue bars). A greater strength indicates a greater diffusion
distance from other nodes in SN1.

superior parietal cortex is part of the dorsal affective network
(Dutta et al. 2014; Fedota and Stein 2015). Please note that we
increased the threshold for significance after FDR correction
from q < 0.05 as for baseline and percentage improvement

of IDAS-II subscales in all PT to q < 0.2 given the decreased
sample size and decreased power of these correlations. As
such, these results should be understood as exploratory and
preliminary.
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Figure 3. Correlation of baseline heat transfer at subject diffusion depths βt with pre-treatment and percentage improvement post-treatment IDAS-II subscales. The
brain network figure at the end of each row shows the corresponding pair of brain for each respective correlation in the row, indicated by the color of the edge
connecting the regions and the correlation plot of the same color. Cortical regions shown in the visualization are plotted according to the average position of the

individual ROIs that they consist of, as per the HCP-MMP1.0 parcellation (Glasser et al. 2016). Correlations of heat transfer with: (A) pre-treatment IDAS-II Depression in
PT; (B) post-treatment IDAS-II Depression percent improvement in all PT; (C) post-treatment IDAS-II Panic percent improvement in SSRI cohort only; (D) post-treatment
IDAS-II Depression percent improvement in CBT cohort only; (E) post-treatment IDAS-II Depression percent improvement in CBT cohort only.

Identification of Subnetwork Targets for Modulation

Once we had characterized the disrupted information diffusion
of SN1 in IP PTs, we next sought to determine brain subnetwork

regions that may serve as neuromodulatory targets to normalize
aberrant subnetwork information diffusion properties towards
those found in HC. To this end, we start by computing the
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Figure 4. Overview of the identification of SN1 brain region targets for heat-based modulation and subsequent correction of information diffusion deficits. (A, B)

Connectome plot visualizations of baseline (first row) and post-heat supplementation (second row) significant differences in heat kernel values with A right ACC/mPFC
or B right area 8BM as modulation targets. Nodes are brain regions of SN1 and edges connecting them are present if a significant difference (defined as t-test P-values
that survive FDR correction with q < 0.05) exists between HC and PT corresponding heat kernel values. Larger/darker node is the target for modulation. Edge colors

indicate the type of significance (dark blue: present at baseline [first row] or remains after modulation [second row] [HC > PT]; light blue: present at baseline but
corrected following modulation; orange: newly significant following modulation [PT > HC]). (C, D) Barplots for mean PT heat (left) and norm of error (right) values for
all mean cortical regions or subregions of the right ACC/mPFC in SN1. (E) Scatter plot indicating subject-specific optimal modulation target heat values grouped by
brain mean cortical regions in SN1.

difference between the mean HC heat kernel matrix and each
kth PT’s heat kernel matrix to obtain a residual heat kernel
matrix. A favorable modulation strategy would then add supple-
mental diffusion activity to a PT’s heat kernel with a pattern that
closely resembles the deficits encoded in a PT’s residual matrix.
To identify such a strategy, the error of the difference between
this residual matrix and the product of a heat value, ck

i , and a
heat kernel modifier matrix, which encodes the effect of supple-
mental heat at a the ithnode on the network, is minimized over
ck

i and repeated for all possible target nodes in order to identify
an optimal brain region and heat value for stimulation. Once a
modulation strategy is determined, the product of the modifier
matrix and the heat value are then added to a PT’s heat kernel
to model the effects of the intervention (see Methods section for
details). For each potential target brain region, we then obtain a

heat and error value corresponding to the optimal effectiveness
of a brain region as a modulation target. As the error values for
all target node tested were empirically observed to be uniform
in distribution with small regional variance (Fig. 4C), we defined
optimality as the brain region requiring the smallest amount of
supplemental heat. Furthermore, this allows us to identify brain
region neuromodulatory targets that potentially more efficiently
disseminate stimulation with fewer off-target effects from a
greater modulatory energy.

We first conducted this analysis on the mean cortical regions
of SN1 as target nodes and found the right ACC/mPFC, which
was identified as a hub of SN1 by mean strSDD, to be the optimal
region to target for heat supplementation, with the lowest mean
heat across all PT (Fig. 4A,C). In addition, we determined subject-
specific optimal brain regions and the right ACC/mPFC was also
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found to be the modal optimal target (34 out of 65 PT) (Fig. 4E).
Next, we applied the same target node identification procedure
to the individual brain regions of the right ACC/mPFC in SN1.
We found that the right 8BM was the optimal nodal modulatory
target (Fig. 4B,D). Note that the right 8BM was an SN1 hub with
the greatest strSDD of all individual subnetwork nodes.

Correction of Subnetwork Diffusion Impairment

As a final step in our analysis, we sought to confirm whether
the heat modulation approach identified as above successfully
normalizes subnetwork information diffusion in PT to that of
HC statistically. To carry this out, we performed left sided t-
tests (contrast: HC > PT) at each heat kernel value (HKV) between
the brain regions of SN1 at baseline in HC versus PT. Only this
direction of t-test was assessed at baseline as this modulation
model can only add heat, and is not presently able to correct
hyperconnected HKVs in PT. We then modified PT heat kernels
at the optimal target nodes and heat values as described above
and repeated the edgewise t-test analysis with left and right
sided t-tests in order identify significantly increased HKVs in PT
relative to HC as a result of heat supplementation. An HKV was
defined as significant if it survived FDR correction (q < 0.05) with
n = ( N

2 ) comparisons, where N is the number of brain regions in
the subnetwork.

We conducted this analysis first on mean cortical regions
using the right ACC/mPFC (N = 23) as a target for modu-
lation and identified 24 significant baseline HKV differences
(Supplementary Table 2). Following heat supplementation, 19
of the original 24 HKV differences were no longer significant
(Fig. 4A, Supplementary Table 2). Three HKVs remained signif-
icant in the same direction as baseline: connections between
the right dorsal visual stream and the right auditory association
area, insula/frontal opercula and lateral temporal cortex. On the
other hand, 2 HKVs gained new significance (PT > HC) following
modulation; connections between the right ACC/mPFC (target)
and the left ventral visual stream and the right inferior parietal
cortex.

We next conducted the same analysis on individual brain
regions in SN1 (N = 48), using the right area 8BM as the mod-
ulatory target (Fig. 4B, Supplementary Table 3). Of the 31 HKVs
differences at baseline, 26 were corrected following heat mod-
ulation. Five HKVs remained significant following modulation,
which predominantly follow the regional pattern as described
above. All 6 of the newly significant (PT > HC) HKVs involved
connections with the right area 8BM (target node).

Discussion
This research provides preliminary evidence of a transdiagnos-
tic subnetwork deficit, which resembles the cingulo-opercular
network, characterized by information diffusion impairment of
the bilateral ACC and mPFC. Central to this impairment is more
specifically the right area 8BM, a key brain region involved
in organizing a broad spectrum of cognitive tasks, which may
underlie previously reported dysfunction of multiple brain cir-
cuits in the IPs. In addition, this is also the first report of using
network diffusion models to study psychiatric disorders. We also
demonstrate that models of neuromodulation involving target-
ing this brain region normalize PT diffusion dynamics towards
those of healthy controls. These analyses provide a framework

for multimodal methods that identify diffusion disrupted sub-
networks and potential targets for neuromodulatory interven-
tion based on previously well-characterized methodology.

From our analyses we discovered a subnetwork (SN1) with
increased diffusion embedding distance, i.e., decreased infor-
mation diffusion capacity at the time scale required for opti-
mally capturing functional connectivity patterns, in HC rela-
tive to IP PT at baseline. Hub regions (as defined by HC or PT
mean strSDD, indicating regions with the greatest total diffu-
sion impairment) of SN1 include the bilateral ACC/mPFC and
insula/frontal opercula, which bears resemblance to the cortical
aspect of the cingulo-opercular network (CON) (Fig. 2). The CON,
which includes the dorsal ACC, anterior insula, PFC, hypotha-
lamus, thalamus and amygdala has been shown to contribute
to many brain functions, including the processing of pain and
negative affect, as well as the maintaining general cognitive
control during goal-oriented behaviors (Dosenbach et al. 2007).
Dysfunction of the CON has also been demonstrated in IPs,
including MDD (Hamilton et al. 2013) and anxiety disorders
(Sylvester et al. 2012). The dorsal ACC, a core hub of the CON, has
been shown to be critical in both MDD (Wu et al. 2016) and anx-
iety disorders (Sylvester et al. 2012). In particular, investigations
of emotion regulation in anxiety disorders have demonstrated
that increased ACC activity (Burkhouse, Kujawa, et al. 2018b) and
coupling to anterior insula activity (Klumpp et al. 2012; Klumpp,
Post, et al. 2013b) is present in HC relative to PT, indicating a
potential regulatory role for the ACC during cognitive control of
emotion processing within the CON.

SN1 also includes brain regions that are part of other func-
tional brain networks, such as the lateral temporal and infe-
rior parietal cortices (a hub of SN1), part of the DMN, and the
superior parietal cortex, part of the dorsal affective network, in
addition to the inferior frontal cortex, which is important for
the coordination of executive function and emotion processing
(Seeley et al. 2007; Roberts et al. 2017). Of note, the inferior
parietal cortex is also a member of the frontal parietal network,
an executive function network that antagonistically deactivates
the DMN (Barkhof et al. 2014). Increased activity of the DMN, a
network defined by functional connectivity at rest associated
with both rumination and worry, relative to other RSNs has
been implicated in MDD (Dutta et al. 2014) and anxiety disorders
(Kim and Yoon 2018). Studies of MDD have also indicated the
widespread disruption in the salience and central executive net-
works (Gong and He 2015; Kaiser et al. 2015). Indeed, accumulat-
ing evidence suggests that dysfunctional coordination between
multiple brain networks may better explain the pathophysiology
of IPs.

Our findings from interrogating interregional information
transfer within SN1 indicate that connections between the bilat-
eral ACC/mPFC and brain regions involved with canonical brain
networks are associated with baseline symptom severity. IDAS-
II Depression scores correlated positively with heat transfer
between the left ACC/mPFC and the posterior cingulate. Reduced
connectivity between the posterior cingulate, a DMN hub, and
DLPFC (Leech and Sharp 2014) and other frontal regions (Yang
et al. 2016) has been previously reported in MDD. In the macaque,
retrograde tracing studies have revealed afferent connections to
the 8BM subregions of the ACC/mPFC from the posterior cingu-
late (Eradath et al. 2015). Taken together, our results may indicate
that depressive symptoms in the IPs at least partly result from
the hyperconnectivity of the DMN to the MDN and CON, which
may skew cognitive resources away from executive control of
emotion processing. On the other hand, negative correlations
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were found with IDAS-II Depression and heat transfer between
ACC/mPFC and the inferior frontal cortex and insula/frontal
opercula. These results are similar to those from previous stud-
ies, where the ACC activity was found to negatively correlate
with depression symptom scales (Wu et al. 2016) and with anxi-
ety symptom scales in the context of its potentially antagonistic
role with the insula in the CON (Klumpp et al. 2012; Klumpp,
Post, et al. 2013b). Overall, these baseline associations provide
evidence for ACC/mPFC activity and connectivity to regions
important for emotion regulation as critical to transdiagnostic
depression symptoms in the IPs.

Our results also indicate that internodal information transfer
of the bilateral ACC/mPFC in SN1 is associated with therapeu-
tic response in both treatment modality agnostic and specific
manners. Interestingly, predictors of general and SSRI specific
treatment response involved similar brain regions to those asso-
ciated with baseline symptom severity. In all PT, negative corre-
lations were found with IDAS-II Depression symptom improve-
ment and the heat transfer between the left ACC/mPFC and
the inferior frontal cortex, insula/frontal opercula and auditory
association cortex. As with all PT at baseline, no associations
were found with IDAS-II Panic. In the SSRI cohort, however,
significant correlations were only found using IDAS-II Panic
improvement, yielding negative associations with connections
between similar regions as with all PT: heat transfer between
the left ACC/mPFC and the inferior frontal cortex and bilateral
insula/frontal opercula. These findings indicate that lower base-
line information transfer between the ACC/mPFC and CON or
inferior frontal cortex are predictive of general and SSRI specific
responsiveness to treatment, and these connections may be the
substrate of treatment action. Interestingly, associations of base-
line internodal information transfer and treatment response in
the CBT cohort were found with unique brain regions compared
to all PT and the SSRI cohort. Significant associations were also
found using both IDAS-II Depression and Panic scales. Depres-
sion improvement was negatively associated with information
transfer between the right ACC/mPFC and superior and infe-
rior parietal cortices, regions of the dorsal affective network
and DMN. Using IDAS-II Panic improvement, we found signif-
icant negative correlations with information transfer between
the right ACC/mPFC and superior parietal cortex and the left
ACC/mPFC and right lateral temporal cortex, another DMN sub-
network region. These results indicate the presence of CBT
specific neural substrates of treatment prediction, and again,
that lower baseline information transfer between these regions
is indicative of greater treatment efficacy. In addition, these
findings are in line with a previous study of CBT for social
anxiety disorder, where increased baseline activation of the ACC
and lateral temporal cortex (Klumpp, Fitzgerald, et al. 2013a) was
predictive of treatment response.

Central to the diffusion impairment of SN1 is a subregion of
the right ACC/mPFC cortical region, area 8BM, the caudal aspect
of the dorsomedial PFC (dmPFC), which borders the dorsal aspect
of the ACC. Retrograde tracing studied in the macaque monkey
have revealed both afferent and efferent neuronal connections
between 8BM and the ACC, indicating likely functional synergy
of these areas (Morecraft et al. 2012; Eradath et al. 2015).
Importantly, 8BM is brain region that has recently been found
to be a key region of the multiple-demand subnetwork (MDN), a
fronto-parietal system that is co-activated during a broad range
of cognitively demanding tasks (Assem et al. 2020). As such,
the MDN is likely critical for the organization and recruitment
of multiple task-specific subsystems in the brain towards

current cognitive needs. Additionally, our network-diffusion
model identified the most effective brain regions as putative tar-
gets for neuromodulatory stimulation on a subject-specific level.
Examining the results of this investigation provide evidence that
the right ACC/mPFC is an optimal target for neuromodulation to
correct SN1 information diffusion dynamics of PT towards those
observed in HC, and, further, that area 8BM is the most efficient
subregion of the ACC/mPFC for such an intervention.

These preliminary findings have important clinical implica-
tions for the therapeutic application of neuromodulatory inter-
ventions for IPs, such as repetitive transcranial magnetic stim-
ulation (rTMS), a focal, non-invasive brain stimulation method.
rTMS, which is typically delivered to the dorsolateral PFC (dlPFC),
is a first line treatment for SSRI-refractory MDD (George et al.
2013) but has also been shown to significantly reduce anxiety
(Du et al. 2018; Chen et al. 2019) and nicotine dependence symp-
toms (Abdelrahman et al. 2021). Although rTMS is generally
effective, MDD remission following treatment is 30–40% (George
et al. 2013), indicating a need for developing better therapeutic
paradigms, such as personalized treatment protocols. In line
with these goals, a study that used MRI guidance to enhance
targeting of specific regions of the dlPFC, all rTMS-resistant MDD
PTs responded to this new approach (Moreno-Ortega et al. 2020).
Another study used fMRI guidance to individually targeted corti-
cal emotion regulation systems to improve rTMS efficacy (Luber
et al. 2017). Our results offer an additional strategy for iden-
tifying brain network targets of rTMS treatment for correcting
subject-specific structural deficits that may underlie functional
expression of IP symptoms.

Limitations and Future Directions

A significant question about the implications of our findings is
whether the addition and propagation of heat on a subnetwork
sufficiently models the effects of rTMS stimulation. It has been
shown that the propagation of direct cortical electrode (Stiso
et al. 2019) and rTMS stimulation and subsequent functional
activity are best predicted by structural connectome topology
(Beynel et al. 2020; Momi et al. 2021), providing encouraging
evidence that network diffusion-based analyses such as those
proposed in this study are an appropriate model for the effects
of rTMS neuromodulation. Nevertheless, further studies are nec-
essary to verify the utility of the proposed model.

While this is the first report of using a multimodal informa-
tion diffusion model towards a transdiagnostic sample of IPs,
the findings presented in this paper pertaining to the pattern
of diffusion impairment of SN1 should be replicated in a larger
sample of IP PT and HC to determine the generalizability of
our results. This is especially true for the analyses obtained
by segregating PT into SSRI and CBT cohorts, as the sample
sizes of these groups are very small, and, accordingly, these
findings must be interpreted as preliminary and exploratory.
Further, availability of post-treatment brain imaging would be
required to make reliable conclusions about network diffusion-
based substrates of treatment response, and, as such, should
be included in future studies. Additionally, as the data used in
this manuscript are from a clinical trial conducted in 2013, and,
as such, the MRI acquisition parameters result in data that is
not matched in quality to that found in current high temporal
and spatial resolution imaging studies, such as those follow-
ing Human Connectome Project-style data collection guidelines
(Glasser et al. 2013; Smith et al. 2013; Sotiropoulos et al. 2013;
Uğurbil et al. 2013).
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Of note, the analyses in present study are performed using a
volumetric version of the HCP-MMP1.0 parcellation, which has
been shown to be less accurate than surface-based approaches
(Coalson et al. 2018), introducing uncertainty regarding the
anatomic localization of brain regions across subjects. We
determined the voxel accuracy of the right area 8BM in the
volumetric atlas to be 81.5% consistent with individual subject
surface-derived parcellations and have otherwise limited out
investigation of individual brain regions to a much coarser
parcellation by aggregating HCP-MMP1.0 ROIs by their cortical
label. Nonetheless, the reliability of ROI localization would be
improved by using the methodology as described in Glasser
et al. (2013) and future work in which cortical-surface derived
parcellations are used should adhere to these procedures.

Although our structural to functional mapping quality, as
measured by Pearson correlation between the predicted and
empirical functional connectomes, is in the range of values
obtained in a replication study of related mappings, other
network-diffusion related models have been developed that
result in better predictive mappings (Deslauriers-Gauthier
et al. 2020). Future studies of these proposed methods should
investigate how the mapping parameters from these related
methods can be incorporated into the currently proposed
model for better structural-functional fusion. Another area
for further development in our proposed network diffusion
methods is that neuromodulation target identification and
simulation can only model the effects of the addition of heat
to subnetwork’s diffusion dynamics. Therefore, if a brain circuit
is found to be pathologically hyperconnected, other strategies
will have to be developed in order model either direct or indirect
inhibition of brain activity. Furthermore, while the network-
diffusion approaches used in this study have been used to
successfully demonstrate the intimate relationship between
structural and functional brain connectivity, they do not model
directed communication between brain regions. Future analyses
could potentially incorporate findings from anatomical tracing
studies such that reconstructed fibers corresponding to such
well-characterized white matter tracts between ROIs may be
assigned a direction of signal propagation. Regardless, advances
in network analyses that consider the inherently directed
nature of neural communication are needed to in order to more
accurately model the underlying neurobiology of brain structure
and function.

Future implications of this research are broad. We present
here an analytical framework assembled from well-characterized
neuroimaging and graph theoretical methods that can be
used as is to study multimodal brain networks for other brain
disorders. Aside from the application to other datasets and to
larger similar datasets for replication, this model offers the
ability to determine the diffusion embedding from functional
connectivity other than that observed during resting-state.
For example, functional connectomes can be generated from
tasks that are known to be implicated in a certain disorder, and
as a result the diffusion embedding will be formed from the
structural basis that best maps to the functional connectivity
observed during this task. This allows for the researcher
to investigate the structural connectivity potentially most
pertinent to forming the functional brain activity observed
during specific tasks, and therefore permits a more granular
interrogation of complex features of brain disorders and states.
Perhaps the most promising and immediate application of
our proposed methodology is that of identifying brain regions
best suited for therapeutic for neuromodulatory intervention,
such as with rTMS. As the proposed methods provide both

subject-specific regional targets and magnitudes of stimulation
that best modify subnetwork dynamics towards those of a
desired (HC) network, future work is in line with improving
the outcomes of rTMS intervention by personalizing treatment
features.

Conclusion
There are two major outcomes of this study. First, we report
impaired information diffusion between area 8BM and other
SN1 regions, many of which have been previously implicated
in both the pathology of multiple IPs and the function of the
default mode, cingulo-opercular and dorsal affective networks.
Second, we found that hubs of SN1, found to be critical for
organizing brain function for a variety of cognitive and emo-
tional processes, are optimal targets for modeled neuromodu-
latory intervention. Taken together, our results may indicate the
presence of a concerted disruption of multiple brain networks
pertinent to cognitive control of emotion regulation in IPs. This
dysregulation of connectivity could result in a loss of “top-
down” executive control of emotion processing via connections
between the multiple demand network and other task-specific
(and task-negative) brain networks. Such a perturbation in brain
network dynamics involving the integration of multiple complex
subsystems via a hub of the multiple demand network may rep-
resent the underlying pathophysiological brain network features
that are common to all IPs and give rise to the heterogeneous
expression of transdiagnostic symptoms.
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