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Abstract

The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in
brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but
not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601
youths age 8–22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray
matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance
imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation
to a working memory and a social cognition task. Across age and sex groups, better performance was associated with
higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory
task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence
PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect.
Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young
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adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance
and integrity of neural tissue while maintaining a low resting energy state.

Key words: multimodal neuroimaging, multimodal brain parameters, brain performance relation, neurodevelopment,
neurocognition

Introduction
While multiple parameters of brain structure and function have
been examined with structural and functional magnetic reso-
nance imaging (MRI) studies, it is still unclear how these mea-
sures are related to arguably the main product of brain pro-
cesses—cognitive performance. The relation between brain vol-
ume and cognitive performance has received the most exten-
sive investigation since Frederick Tiedemann (1836) offered his
conclusion that “There is undoubtedly a very close connexion
between the absolute size of the brain and the intellectual pow-
ers and functions of the mind.” (p. 502). However, the magnitude
of this relation is still debated; estimates of the variance in
cognitive measures explained by volume range from ∼3% to
> 30% (Witelson et al. 2006; Gignac and Bates 2017; Nave et al.
2019; Pietschnig et al. 2015). Advanced neuroimaging offers addi-
tional parameters of brain structure and function, and Jung and
Haier (2007) performed a review of studies across modalities and
proposed the parieto-frontal integration theory (PFIT), which
stipulates a network of regions that are predominantly involved
in complex reasoning and intelligence tasks. This network inte-
grates dorsolateral prefrontal cortex, the inferior and superior
parietal lobule (SPL), the anterior cingulate, and regions within
the temporal (Tmp) and occipital (Occ) lobes (Basten et al. 2015;
Estrada et al. 2019; Hilger et al. 2017). Within this network of
regions, neuroanatomic parameters of higher volume, density
and anisotropy and lower rates of cerebral blood flow (CBF)
and metabolism have been associated with better cognitive
performance.

The PFIT theory received some support in subsequent stud-
ies, although few have examined multiple brain parameters
typically focusing only on volume. Ritchie et al. (2015) com-
pared the relationship of volume to performance with other
neuroanatomic parameters such as cortical thickness and found
that volume accounted for the largest share of the variance
(around 12%). Ryman et al. (2016) applied graph-theory analyses
to volumetric data and reported that in males a latent factor
of fronto-parietal gray matter (GM) related to general cognitive
abilities, while in females the cognition-related factor involved
white matter (WM) efficiency and total GM volume without
regional specificity. Studies with relatively small samples have
linked some diffusion tensor imaging (DTI) parameters to per-
formance (e.g., Schmithorst et al. 2005; Qiu et al. 2008; Gençet al.
2018). A study on a larger sample (N = 72) applied graph theory
to DTI data and reported sex differences, with females having
greater local efficiency, but these effects were not linked to
performance (Yan et al. 2011). Graph theory was also applied
in the philadelphia neurodevelopmental cohort (PNC) sample
by Ingalhalikar et al. (2014), and they reported greater within-
hemispheric connectivity in males and between-hemispheric
connectivity in females, as well as sex differences in modularity
and participation coefficients.

Studies relating CBF to performance likewise supported the
PFIT model, showing that age-related decline in CBF is related

to performance decline (Hshieh et al. 2017; Rane et al. 2018).
Resting-state functional MRI (rs_fMRI) was examined in relation
to cognitive performance in a small sample (Pamplona et al.
2015), and in a larger sample (N = 79) by Vakhtin et al. (2014),
who assessed both resting state and task-activated connectivity.
They reported that regions involved in task-related networks
included the bilateral medial frontal (Fro) and parietal (Par) cor-
tex, right superior Fro lobule, and right cingulate gyrus. As part
of multivariate measures in the Human Connectome Project
(Smith et al. 2015), Finn et al. (2015) showed that functional
connectivity profiles predicted “levels of fluid intelligence” and
that “the same networks that were most discriminating of indi-
viduals were also most predictive of cognitive behavior.” Fur-
thermore, Yoo et al. (2018) reported, across several datasets, that
models trained on task data outperformed those trained on
resting-state data in predicting performance (cf. Fong et al. 2019;
Jangraw et al. 2018) and Greene et al. (2018) demonstrated similar
effects in two large datasets. Finally, Dubois et al. (2018) were
able to predict up to 20% of the variance in general cognitive per-
formance based on resting-state connectivity metrics in a large
sample (n = 884) from the HCP. Each of these studies examined
individual parameters of either structure or function. Therefore,
there is a need for simultaneous examination of neuroanatomic
and neurophysiologic parameters in relation to cognitive perfor-
mance. Such simultaneous examination will allow gauging the
relative contribution of the anatomic and physiologic param-
eters to cognitive performance, and their examination during
development will offer insight on how brain parameters are fine-
tuned for optimal adult levels. The PFIT has yet to be tested
across both structural and functional brain parameters in a
single, adequately powered multimodal study of youths.

We tested the PFIT with multimodal neuroimaging in a
prospective sample of 1601 youths age 8–22, all studied on
the same high-field (3 Tesla) scanner with contemporaneously
obtained measures of cognitive performance, as part of the
Philadelphia Neurodevelopmental Cohort (Gur et al. 2012;
Calkins et al. 2015). The methods of sample ascertainment
and the detailed neuroimaging protocols have been published
(Satterthwaite et al. 2014a). Multimodal neuroimaging yielded
regional measures of GM and WM volume and GM density
(GMD) from T1-weighted scans, mean diffusivity (MD) from
DTI (fractional anisotropy was also measured but since it is
only valid in WM, this parameter was not included here),
resting-state CBF from arterial spin-labeled (ASL) sequences,
the amplitude of low frequency fluctuations (ALFFs) and
regional homogeneity (ReHo) measures from rs_fMRI, and
BOLD activation for a working-memory (NBack) and a social-
cognition (emotion identification; IDEmo) task. The methods
for image processing and for obtaining these brain parameters
were detailed in previous publications (Gennatas et al. 2017;
Ingalhalikar et al. 2014; Satterthwaite et al. 2014a,b; Vandekar
et al. 2015) and are briefly summarized in the Methods section.
The neurocognitive assessment provided measures of accuracy
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Table 1 Intercorrelations among the global brain parameters for females (upper triangle) and males (lower triangle)

Males

TBV GMD MD CBF ALFF ReHo NBack IdEmo N

Females TBV −0.018 −0.799∗∗∗ 0 0.086 0.079 0.072 0.118 603
GMD −0.001 0.192∗ −0.322∗∗∗ −0.087 −0.118 0.131 −0.122 603

MD −0.729
∗∗∗

0.3∗∗∗ 0.067 −0.027 −0.036 −0.045 −0.031 460
CBF −0.045 −0.175∗ 0.017 −0.019 0.004 −0.174 0.082 574
ALFF 0.212∗∗∗ −0.209∗∗∗ −0.201∗∗ 0.075 0.767∗∗∗ 0.067 −0.007 405
ReHo 0.103 −0.262∗∗∗ −0.169∗ 0.068 0.715∗∗∗ 0.046 0.02 405
NBack 0.145 0.05 −0.07 −0.026 0.032 −0.004 0.042 465
IdEmo 0.154 −0.111 −0.077 0.029 0.026 0.084 0.165∗ 523
N 677 677 560 649 500 500 550 611

Note: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. ALFF = Amplitude of low frequency fluctuations at resting-state; ReHo = Regional homogeneity at resting-state; Nback =
Blood oxygenation-level dependent (BOLD) activation for the Nback task; IDEmo = BOLD activation for the emotion identification task.

and speed on multiple behavioral domains. Since available
literature primarily examined general intellectual functioning,
we selected as the primary cognitive measure the most
comparable score from the battery, which is a factor score that
summarizes accuracy on executive functioning and complex
cognition (Moore et al. 2015; Swagerman et al. 2016).

Materials and Methods
Participants

Participants for the PNC were recruited from the Children’s Hos-
pital of Philadelphia pediatric network throughout the Delaware
Valley as described in Calkins et al. (2015). A subsample of 1601
participants (out of the 9498 PNC sample) underwent multi-
modal neuroimaging, as described in Satterthwaite et al. (2014a).
Of these, 340 were excluded for medical disorders that could
affect brain function, as well as current use of psychoactive
medications, prior inpatient psychiatric treatment, or an inci-
dentally encountered structural brain abnormality. Sample size
was further reduced for some modalities upon quality assur-
ance procedures, most for excessive motion (see below, Table 1
and Supplementary Table S1). All participants underwent psy-
chiatric assessment (Calkins et al. 2015) and neurocognitive
testing (Gur et al. 2012, 2014).

Cognitive Measures

Cognitive performance was assessed with the Penn Comput-
erized Neurocognitive Battery (CNB). The CNB consists of 14
tests adapted from tasks applied in functional neuroimaging to
evaluate a range of cognitive domains (Gur et al. 2010, 2012, 2014;
Moore et al. 2015; Roalf et al. 2014a). These domains include
executive control (abstraction and mental flexibility, attention,
working memory), episodic memory (verbal, facial, spatial), com-
plex cognition (verbal reasoning, nonverbal reasoning, spatial
processing), social cognition (emotion identification, emotion
intensity differentiation, age differentiation) and sensorimo-
tor and motor speed. Accuracy and speed for each test were
z-transformed. Cognitive performance was summarized by a
factor analysis of both speed and accuracy data (Moore et al.
2015), which delineated three accuracy factors corresponding
to: 1) executive function and complex reasoning, 2) episodic
memory, and 3) social cognition. The first factor was used as
the measure of cognitive performance in all analyses, as it has

the highest association with intelligence quotient (IQ) estimates
(Moore et al. 2015; Swagerman et al. 2016).

Neuroimaging

All MRI scans were acquired on a single 3 T Siemens TIM Trio
whole-body scanner located in the Hospital of the University
of Pennsylvania. Signal excitation and reception were obtained
using a quadrature body coil for transmit and a 32-channel head
coil for receive. Gradient performance was 45 mT/m, with a
maximum slew rate of 200 T/m/s. Image processing and analysis
were performed using AFNI, FSL, and DTI specific tools with
the advanced neuroimaging tools (ANTs) pipeline (Avants et al.
2011a,b).

Structural
Parameters of brain anatomy were derived from volumetric
scans (T1-weighted) and DTI.

Volumetric MRI. Brain volumetric imaging was obtained
using a magnetization prepared, rapid-acquisition gradient-
echo (MPRAGE) sequence (TR/TE/TI = 1810/3.5/1100 ms; FOV
RL/AP = 180/240 mm; Matrix RL/AP/slices = 192/256/160 Slice
thick/gap = 1/0 mm; Flip angle = 90; No Reps; GRAPPA factor = 2;
BW/pixel = 130 Hz; PE direction = RL; Acq time = 3:28 min).
Receive coil shading was reduced by selecting the Siemens
prescan normalize option, which is based on a body coil
reference scan. Image quality assessment (QA) was performed
both by visual inspection and with algorithms to detect artifacts
such as related to excessive head motion.

To maximize accuracy, advanced structural image pro-
cessing, quality assurance, and registration procedures were
employed for the measurement of the cortical subcortical and
cerebellar volumes and GMD. Estimation of brain regions used
a multiatlas labeling approach. A set of 24 young adult T1-
weighted volumes from the OASIS dataset (Marcus et al. 2007)
were manually labeled and registered to each subject’s T1-
weighted volume using the top-performing SyN diffeomorphic
registration (Avants et al. 2011a; Klein et al. 2010). These label
sets were synthesized into a final parcellation using joint label
fusion, which is similarly reliable to other state-of-the-art label
fusion algorithms but uses significantly fewer atlases, and is far
more accurate than segmentation performed with a single atlas
(Wang et al. 2013). Volume was determined for each parcel using
the intersection between the parcel created and prior driven
GM cortical segmentation from the ANTs cortical thickness
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pipeline as described below. Density estimates were calculated
within each parcel as described below. To avoid registration
bias and maximize sensitivity to detect regional effects that
can be impacted by registration error, a custom adolescent
template and tissue priors were created using data from 140
PNC participants, balanced for age and sex. Structural images
were then processed and registered to this custom template
using the ANTs cortical thickness pipeline (Tustison et al. 2014).
This procedure includes brain extraction, N4 bias field correction
(Tustison et al. 2010), Atropos tissue segmentation (Avants et al.
2011b), and SyN diffeomorphic registration method (Avants et al.
2011a; Klein et al. 2010).

Finally, GMD was calculated using Atropos (Avants et al.
2011b), with an iterative segmentation procedure that is ini-
tialized using 3-class K-means segmentation. This procedure
produces both a discrete 3-class hard segmentation as well as
a probabilistic GMD map (soft segmentation) for each subject.
GMD was calculated within the intersection of this 3-class seg-
mentation and the subject’s volumetric parcellation (Gennatas
et al. 2017). Images included in the final analysis passed a rigor-
ous QA procedure, including evaluation of motion, as previously
detailed (Rosen et al. 2018).

Diffusion (DTI). Diffusion weighted imaging (DWI) scans
for measuring water diffusion were obtained using a twice-
refocused spin-echo single-shot EPI sequence. The sequence
employs a 4-lobed diffusion encoding gradient scheme com-
bined with a 90–180-180 spin-echo sequence designed to
minimize eddy-current artifacts. The sequence consisted of 64
diffusion-weighted directions with b = 1000 s/mm2, and 7 scans
with b = 0 s/mm2.

Diffusion data were skull stripped by generating a brain mask
for each subject by registering a binary mask of a standard
image (FMRIB58_FA) to each subject’s brain using FLIRT (Jenk-
inson et al. 2002). When necessary, manual adjustments were
made to this mask. Next, eddy currents and movement were
estimated and corrected using FSL’s eddy tool (Andersson and
Sotiropoulos, 2016; Graham et al. 2016; Roalf et al. 2016). Eddy
improves upon FSL’s Diffusion Tool Box (Behrens et al. 2003) and
eddy correct tool (Andersson and Sotiropoulos 2016; Graham
et al. 2016) by simultaneously modeling the effects of diffusion
eddy current and head movement on DTI images, reducing
the amount of resampling. The diffusion gradient vectors were
rotated to adjust for motion using the 6-parameter motion
output generated from the eddy. Then, the B0 field map was
estimated and distortion correction was applied to the DTI data
using FSL’s FUGUE (Smith 2002). Finally, the diffusion tensor was
modeled and metrics (MD) were estimated at each voxel using
FSL’s DTIFIT.

Registration from native space to a template space was com-
pleted using DTI-TK (Zhang et al. 2014; Zhang and Laidlaw
2006). First, DTI output files from DTIFIT were converted to DTI-
TK format. Next, a template was generated from the tensor
volumes using 14 representative diffusion datasets that were
considered “Excellent” from the PNC sample. One individual
from each of the 14 ages (age range 8–21) was randomly selected.
These 14 DTI volumes were averaged to create an initial tem-
plate. Next, data from the 14 subjects were registered to this
template in an iterative manner. Unlike standard intensity-
based registration algorithms, this process utilizes the full ten-
sor information to best align the underlying WM tracts using
iterations of rigid, affine, and diffeomorphic registration leading
to the generation of a successively refined template. Ultimately,
one high-resolution refined template was created and used for

registration of the remaining diffusion datasets. All DTI maps
were then registered (rigid, affine, diffeomorphic) to the high-
resolution study-specific template using DTI-TK. Whole-brain
analysis was performed using a customized implementation of
tract-based spatial statistics (Bach et al. 2014). MD values were
computed using a study-specific WM skeleton. MD has excellent
intrasession and acceptable intersession reliability, especially
for sequences with more gradient directions and repetitions
within a session, as is the case in the present study (Wang
et al. 2012). Then, standard regions of interest (ROI; ICBM-JHU
WM Tracts; Harvard-Oxford Atlas) were registered from MNI152
space to the study-specific template using ANTs registration
(Avants et al. 2011a). Mean diffusion metrics were extracted from
these ROIs using FSL’s “fslmeants.” Images included in this final
analysis passed a stringent QA procedure as previously detailed
(Roalf et al. 2016).

Functional
Perfusion (ASL) measures of CBF. Brain perfusion was imaged using
a pseudo continuous arterial spin labeling sequence (Wu and
Wong, 2007), which has been shown to have good to excellent
scan–rescan reliability within the site (Almeida et al. 2018).
The sequence used a single-shot spin-echo EPI readout. Parallel
acceleration (i.e., GRAPPA factor = 2) was used to reduce the min-
imum achievable echo time. The arterial spin labeling param-
eters were: label duration = 1500 ms, postlabel delay = 1200 ms,
labeling plane = 90 mm inferior to the center slice. The sequence
alternated between label and control acquisitions for a total of
80 acquired volumes (40 labels and 40 controls), the first being a
label.

ASL data were preprocessed using standard tools included
with FSL (Jenkinson et al. 2012). Following distortion correction
using the B0 map with FUGUE, the first four image pairs were
removed, the time series was realigned in MCFLIRT (Jenkinson
et al. 2002), the skull was removed with BET (Smith 2002), and
the image was smoothed at 6 mm FWHM using SUSAN (Smith
and Brady 1997). CBF was quantified from control-label pairs
using ASL Toolbox (Wang et al. 2008). As prior (Satterthwaite
et al. 2014a), the T1 relaxation parameter was modeled on an
age- and sex-specific basis (Wu et al. 2010). This model accounts
for the fact that T1 relaxation time differs according to age and
sex, and has been shown to enhance the accuracy and reliability
of results in developmental samples (Jain et al. 2012). The CBF
image was coregistered to the T1 image using boundary-based
registration (Greve and Fischl 2009), and regional CBF values
were averaged within each parcel. Subjects included in this anal-
ysis had low motion as measured by mean relative framewise
displacement less than 0.5 mm.

Resting-state BOLD. Resting-state BOLD scans were acquired
with a single-shot, interleaved multislice, gradient-echo, echo
planar imaging (GE-EPI) sequence. In order to reach steady-
state signal levels, the sequence performed two additional
dummy scans at the start. The imaging volume was sufficient
to cover the entire cerebrum of all subjects, starting superiorly
at the apex. In some subjects, the inferior portion of the
cerebellum could not be completely included within the imaging
volume. The selection of imaging parameters was driven by
the goal of achieving whole-brain coverage with acceptable
image repetition time (i.e., TR = 3000 ms). A voxel resolution of
3 × 3 × 3 mm with 46 slices was the highest obtainable resolution
that satisfied those constraints (multiband acquisition methods
were not available when these data were collected). During the
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resting-state scan, a fixation cross was displayed as images were
acquired. Participants were instructed to stay awake, keep their
eyes open, fixate on the displayed crosshair, and remain still.
Resting-state scan duration was 6.2 min.

Task-related BOLD. Task-related modulations of BOLD were
measured using two fMRI tasks, as described in Satterthwaite
et al. (2014a). The Nback working memory task involved the
presentation of complex geometric figures (fractals) for 500 ms,
followed by a fixed interstimulus interval (ISI) of 2500 ms. This
occurred under three conditions: 0-back, 1-back, and 2-back,
producing different levels of working memory load. In the 0-
back condition, participants responded with a button press to
a specified target fractal. For the 1-back condition, participants
responded if the current fractal was identical to the previ-
ous one; in the 2-back condition, participants responded if the
current fractal was identical to the item presented two trials
previously. Each condition consisted of a 20-trial block (60 s);
each level was repeated over three blocks. The target–foil ratio
was 1:3 in all blocks, with 45 targets and 135 foils overall. Visual
instructions (9 s) preceded each block, informing the participant
of the upcoming condition. The task included a total of 72 s
of rest while a fixation crosshair was displayed, which was
distributed equally in three blocks of 24 s at beginning, middle,
and end of the task. Total task duration was 11.6 min. The emo-
tion identification (IdEmo) task employed a fast event-related
design with a jittered ISI. Participants viewed 60 faces displaying
neutral, happy, sad, angry, or fearful expressions, and were asked
to label the emotion displayed. Each face was displayed for
5.5 s followed by a variable ISI of 0.5 to 18.5 s, during which a
complex crosshair (that matched the faces’ perceptual qualities)
was displayed. Total IdEmo task duration was 10.5 min.

BOLD processing. Both task-related and resting-state task-
free functional images were processed using a top-performing
pipeline for removal of motion-related artifact (Ciric et al.
2017). Preprocessing steps included 1) correction for distortions
induced by magnetic field inhomogeneities using FSL’s FUGUE
utility, 2) removal of the 4 initial volumes of each acquisition, 3)
realignment of all volumes to a selected reference volume using
MCFLIRT (Jenkinson et al. 2002), 4) removal of and interpolation
over intensity outliers in each voxel’s time series using AFNI’s
3DDESPIKE utility (Cox 1996), 5) demeaning and removal of any
linear or quadratic trends, and 6) coregistration of functional
data to the high-resolution structural image using boundary-
based registration (Greve and Fischl 2009). The artifactual
variance in the data was modeled using a total of 36 parameters,
including the 6 framewise estimates of motion, the mean
signal extracted from eroded WM and cerebrospinal fluid
compartments, the mean signal extracted from the entire brain,
the derivatives of each of these 9 parameters, and quadratic
terms of each of the 9 parameters and their derivatives. Both
the BOLD-weighted time series and the artifactual model time
series were temporally filtered using a first-order Butterworth
filter with a passband between 0.01 and 0.08 Hz.

Subject exclusions were based on BOLD sequence specific
quality control assessment. These included: lack of complete
fMRI data for a particular task; high in-scanner motion (mean
relative displacement > 0.5 mm or maximum relative displace-
ment > 6 mm); poor brain coverage in fMRI data; or failure to
perform tasks at a minimal level (N-back: more than 8 [>2 SD]
nonresponses on the 0-back; emotion Identification: more than
11 [>2 SD] nonresponses, or number correct not significantly
above chance performance [<18]).

BOLD outcome measures. ALFF: functional connectivity among
brain regions is primarily attributable to correlations among
low-frequency fluctuations in regional activation patterns (Di
et al. 2013). The ALFFs shows high scan–rescan reliability within
a session, with ICCs centered at approximately 0.8 (Somande-
palli et al. 2015). The voxelwise amplitude of low-frequency
fluctuations (ALFF; Yang et al. 2007) was computed as the sum
(discretised integral) over frequency bins in the low-frequency
(0.01–0.08 Hz) band of the voxelwise power spectrum, computed
using a Fourier transform of the time-domain of the voxelwise
signal. ALFF was calculated on data smoothed in SUSAN using
a Gaussian-weighted kernel with 6 mm FWHM (Smith and
Brady 1997). ALFF was selected because it is a frequently used
measure derived from fMRI (PubMed crossing of fMRI and
ALFF yielded 597 publications https://www.ncbi.nlm.nih.gov/
pmc/?term=ALFF+and+fmri retrieved 27 September 2020).

ReHo: voxelwise ReHo (Zang et al. 2004) is equivalent
to Kendall’s coefficient of concordance computed over the
time series in each voxel’s local neighborhood. ReHo can
thus be used as an estimate of the homogeneity of each
neighborhood’s activation pattern. ReHo shows moderate scan–
rescan reliability within a session, with ICCs centered at
approximately 0.6 (Somandepalli et al. 2015). Because spatial
smoothing intrinsically elevates ReHo estimates by elevating
spatial autocorrelation, Kendall’s W was computed only on
unsmoothed data. Each voxel’s neighborhood was defined to
include the 26 voxels adjoining its faces, edges, and vertices. The
voxelwise homogeneity map was subsequently smoothed using
a Gaussian kernel with FWHM of 6 mm in SUSAN to improve
the signal-to-noise ratio (Smith and Brady 1997). Finally, regional
ReHo values were then averaged across the anatomically derived
subject-specific segmentation. Participants included in this
analysis had low motion with a mean relative frame wise
displacement less than 2.5 mm. ReHo was selected because
it is among the most frequently used measures derived from
resting-state fMRI (PubMed crossing of fMRI and ReHo yielded
549 manuscripts https://www-ncbi-nlm-nih-gov.proxy.library.u
penn.edu/pubmed/?term=reho+and+fmri retrieved 3 July 2020).

ALFF and ReHo reflect different aspects of regional neural
activity. ALFF measures the total power of the BOLD signal
within the low-frequency range, and is thus proportional to
regional neural activity, while ReHo is a voxel-based measure of
the similarity between the time-series of a given voxel and its
nearest neighbors, reflecting the synchrony of adjacent regions
(see Lv et al. 2018; Zang et al. 2004).

Subject-level statistical analyses were carried out voxelwise
with a canonical hemodynamic response function in FSL FEAT.
For the n-back, 3 condition blocks (0-back, 1-back, and 2-back)
were modeled. Six motion parameters and the instruction
period were included as nuisance covariates, and the rest
(fixation) condition provided unmodeled baseline. The depen-
dent measure obtained was 2-back > 0-back, capturing the effect
of increasing working memory load. For emotion identification,
events were modeled as 5.5 s boxcar, matching the duration
of face presentation. Five individual emotion regressors were
included together with their temporal derivatives and six
motion parameters. The contrast of interest was emotion face
(happy+sad+anger + fear+neutral> fixation). Target ROIs for
an NBack and an emotion identification task have acceptable
reliability, as measured by relative agreement ICCs, over the
course of 2 weeks (Plichta et al. 2012; but see Elliott et al.
2020).

https://www.ncbi.nlm.nih.gov/pmc/?term$=$ALFF+and+fmri
https://www-ncbi-nlm-nih-gov.proxy.library.upenn.edu/pubmed/?term=reho+and+fmri
https://www-ncbi-nlm-nih-gov.proxy.library.upenn.edu/pubmed/?term=reho+and+fmri
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Statistical Analysis

We examined the association of variability in brain structural
and functional parameters and our performance parameter
in four stages, aimed to contain type I error: 1) global values
were examined for association with performance; 2) hypothesis
testing, specifically the PFIT regions were examined across
modalities compared with non-PFIT counterparts; 3) exploratory
(hypothesis-generation), all regions were included and non-PFIT
regions showing comparable significance and effect sizes were
considered for inclusion in an Extended-PFIT (ExtPFIT) network;
4) data-driven performance prediction to estimate variance
explained by brain parameters. Prior to further analyses,
we compared correlations between performance and brain
parameters in the left and right hemispheres and found that
the effect sizes separating high and low performers were nearly
identical in the two hemispheres for given regions, with left–
right correlations ranging from the lowest of 0.833 for CBF to
0.944 for ReHo. Therefore, subsequent analyses summed or
volume-averaged the two hemispheres as appropriate. Analyses
were conducted using the open-source R platform (Version 3.5,
R Core Team 2015).

Global values
The global measures included estimated total brain volume
(TBV), average whole-brain values of GMD, MD, CBF, ALFF, ReHo,
and the BOLD activation contrasts for the Nback and IdEmo
tasks. The global measures were standardized within modality
(Z-scores) prior to fitting the generalized estimating equations
(GEEs) model. Since scaled total activation sums to zero, global
values for the activation tasks were represented by activation
their respective target regions, that is, midfrontal gyrus for the
NBack and averaged activation in amygdala, anterior insula, and
entorhinal cortex for the IdEmo. While analyzed as continuous
variables, age interactions were visually examined by dividing
the sample into children (ages less than 13), adolescents (ages
13–17), and young adults (ages 18 and older). Similarly, perfor-
mance interactions were examined by dividing the sample into
high, middle, and low-performance bins based on tertile splits of
the age-regressed performance scores. These performance splits
generated effect sizes by calculating the difference between
the top performance tertile and the bottom performance ter-
tile in standard deviation units (Cohen’s D). This method of
exploring higher-order interactions by examining not just P-
values but also effect sizes were preferred over one that is
guided by P-values alone as more reliable and interpretable
(Kraemer 2019).

Hypothesis-testing
Regional analyses: testing PFIT. To test the PFIT, we examined
regional specificity and compared regional differences of
interactions with performance, contrasting PFIT with non-
PFIT regions. GEEs models were fit within each modality.
To minimize type I error given the large number of regions
(up to 128 regions per modality), we aggregated them into
8 neuroanatomic sections: Fro, Tmp, Par, Occ, limbic (Lim),
baso-striatal, cerebellum, and WM. The PFIT contrast was
performed in sections that contained PFIT regions. Section
volumes were derived using the sum of all regions involved, for
all other brain measures a volume-weighted mean of the regions
involved was calculated at the subject-level for each brain
section.

For the hypothesis-testing approach, analyses were con-
ducted at the global and regional levels by fitting GEEs with
unstructured working correlation structure. GEE models are
an extension of generalized linear models that estimate
dependence among repeated measures by a user-specified
working correlation matrix that allows for correlations in the
dependent variable across observations. Five nested forms of
GEE models were fit and evaluated as shown below. The null
model (Model 1) evaluated the association of the demographic
variables, age, and sex, on brain parameters. A second model
added the performance term to evaluate the association
between performance and brain parameters adjusted for
demographic variables (Model 2). To evaluate if association of
performance and brain parameters differed by sex or by age,
interaction terms were added as shown in Model 3 and Model
4, respectively. To evaluate if association of performance and
brain differed by both age and sex, Model 5 included all main
effects and all possible interactions. Model performance was
compared using a Wald test. A squared age term was included
to capture nonlinear effects of age. Models were fit at all
anatomical specificity levels. The hypothesis, PFIT, was tested
by contrasting PFIT to non-PFIT regions across the brain with
interaction analyses. This analysis was followed by examining
the full model, which included brain region as a vector nested
within each section.

Model 1: null model: sex and age associations:

Yij = β0 + β1

(
Brainij

)
+ β2 (Sexi) + β3

(
Agei

)

+β4

(
Brainij × Sexi

)
+ β5

(
Brainij × Agei

)

+β5
(
Sexi × Agei

) + β6

(
Brainij × Sexi × Agei

)
+ εij

Model 2: model associations of performance and brain:

Yij = β0 + β1
(
Performancei

) + β2

(
Brainij

)
+ β3 (Sexi)

+β4
(
Agei

) + β4

(
Performancei × Brainij

)

+β5

(
Brainij × Sexi

)
+ β6

(
Brainij × Agei

)

+β7
(
Sexi × Agei

) + β8

(
Brainij × Sexi × Agei

)
+ εij

Model 3: Model with sex modifying the associations of per-
formance and brain:

Yij = β0 + β1
(
Performancei

) + β2

(
Brainij

)
+ β3 (Sexi)

+β4
(
Agei

) + β4

(
Performancei × Brainij

)

+β5
(
Performancei × Sexi

) + β6

(
Brainij × Sexi

)

+β7

(
Brainij × Agei

)
+ β8

(
Sexi × Agei

)

+β9

(
Performancei × Brainij × Sexi

)

+β10

(
Brainij × Sexi × Agei

)
+ εij
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Model 4: Model with age modifying the associations of per-
formance and brain:

Yij = β0 + β1
(
Performancei

) + β2

(
Brainij

)
+ β3 (Sexi)

+β4
(
Agei

) + β4

(
Performancei × Brainij

)

+β5
(
Performancei × Agei

) + β6

(
Brainij × Sexi

)

+β7

(
Brainij × Agei

)
+ β8

(
Sexi × Agei

)

+β9

(
Performancei × Brainij × Agei

)

+β10

(
Brainij × Sexi X Agei

)
+ εij

Model 5: Model with age and sex modifying the associations
of performance and brain

Yij = β0 + β1
(
Performancei

) + β2

(
Brainij

)
+ β3 (Sexi)

+β4
(
Agei

) + β5

(
Performancei × Brainij

)

+β6
(
Performancei × Sexi

) + β7
(
Performancei × Agei

)

+β8

(
Brainij × Sexi

)
+ β9

(
Brainij × Agei

)

+β10
(
Sexi × Agei

) + β11

(
Performancei × Brainij × Sexi

)

+β12

(
Performancei × Brainij × Agei

)

+β13

(
Brainij × Sexi × Agei

)
+ β14

(
Performancei

×Brainij × Sexi × Agei

)
+ εij

For all models above, i indicates the participant number, j

indexes the individual brain spatial location, and ij denotes the
random error.

Exploratory hypothesis-generation analyses. The hypothesis-
testing phase was followed by an exploratory hypothesis-
generation phase, where we used both P-values and effect
sizes (see Kraemer 2019) to guide the search for additional
regions as candidates for the ExtPFIT network. Exploratory
analyses to understand neurodevelopmental changes were
conducted for those brain sections and in those modalities that
showed significant interactions with performance. Significant
effects and interactions of performance were elucidated by
charting the brain parameter profiles of effect sizes (Cohen
D) for the differences between the high and low performance
(tertiles) groups. Regions were rank-ordered for each modality
(volume, GMD, etc.) by the P-value of its association with
performance and by the effect size separating high from low
performance (both after adjusting for covariates including
quality metrics and reversing the sign of the effect sizes for MD
and CBF, where lower values were hypothesized for the high-
performance group). The averaged cross-modality ranking was
considered evidence of cross-modality relevance to cognitive
performance. From each section containing PFIT regions, we
included non-PFIT regions showing a cross-modality ranking
comparable or exceeding that of the PFIT region as candidates
for inclusion in ExtPFIT. Finally, we examined effect sizes for
cerebellar and WM regions for which cross-modality data were
available.

Data-driven performance-prediction analysis. The CNB-based
complex cognition performance factor score (Moore et al. 2015)
was predicted using each brain parameter by modality. Subjects
included in this analysis passed all modality-specific inclusion
criteria. Within each modality and then across all modalities,
three sets of regressions were fit in training sets, and R2s were
estimated in the corresponding test sets: 1) performance was
regressed on scaled age, age2, and age3, 2) performance was
regressed on scaled brain features subject to a ridge penalty,
and 3) performance was regressed on scaled age, age2, age3,
and brain features, with only the brain features subject to
the ridge penalty. In each of 10 000 iterations for each set of
regressions, the sample was stratified based on performance
using the “createFolds” function from the “caret” package
(Kuhn et al. 2016) in R into equally sized training and testing
sets. Within each training fold that utilized ridge regression, a
model was built using the “glmnet” function in the “glmnet”
package (Friedman et al. 2010; Hastie and Tibshirani, 2010).
The chosen ridge regression penalty parameter minimized
out-of-sample mean squared error, where each test set was a
unique fifth of the training set for the main ridge regression.
The unique variance that brain features can explain in
cognition above and beyond age was estimated by taking the
difference in the means of the out-of-sample R2s from 1)
and 3). To test if this difference was significant, differences
in R2s were calculated for each test set. The proportion of
R2s in 3) that were greater than 1) for each modality within
each sex served as the initial estimates for the P-values, to
which FDR correction was then applied to control for multiple
comparisons.

Results
Global Values

The global values showed generally small intercorrelations in
either males or females, except for high negative correlations
(exceeding 0.7) between volume and MD and similarly high
positive correlations between ALFF and ReHo (Table 1). The
small but significant negative correlation between GMD and
CBF, seen both in males and females, confirms that low
CBF does not simply reflect low GMD (since CBF is higher
in GM than in WM) and is therefore likely of physiological
significance. Note that since each modality required spe-
cific QA metrics for inclusion, the sample sizes for each
modality differed somewhat, and Supplementary Table S1
compares included and excluded groups on sex, age, and
performance.

The GEE indicated that performance was significantly asso-
ciated with whole-brain global measures across modalities and
this association differed by sex and age (GEE, Wald χ2 = 59.51,
df = 30, P = 0.001). This interaction (Fig. 1) indicated that while
high performers had higher volume and greater GMD com-
pared with medium and low-performance groups, they had
lower MD and CBF, no differences in ALFF, ReHo or the emotion
identification task, and greater activation for the NBack task
(first and third rows of Fig. 1). Global effect sizes of differences
between performance groups became stronger from childhood
to adulthood for volume and GMD as well as for NBack acti-
vation. For the other parameters, this trend seemed more pro-
nounced in males than in females (second and fourth rows in
Fig. 1).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa282#supplementary-data
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Figure 1. Global values for each modality by performance group (tertiles) in males (black) and females (gray). The first and third panels display means (±95% CI) of low
(Lo), medium (Me), and high (Hi) tertiles of performers on volume, GMD, MD, CBF, ALFF, ReHo, NBack (Medial Frontal Gyrus), and IdEmo (Anterior Insula, Amygdala,
Entorhinal Area). The second and fourth panels display effect sizes (Cohen’s D) for the differences between high and low performers on each parameter in children,

adolescents, and young adults. All figures were made using the R package “ggplot2” (Wickham, 2011).

Hypothesis testing

The results of the GEE contrasting PFIT to non-PFIT regions
are summarized in Table 2. GEEs showed that in all modalities
there was a highly significant Performance∗PFIT interaction,
indicating that performance related to these parameters differ-
ently in PFIT and non-PFIT regions. Some higher-order interac-
tions with sex and age were also significant in some modali-
ties, and the 4-way (Performance∗PFIT vs non-PFIT∗Sex∗Age2)
was significant for GMD. The PFIT regions (Basten et al. 2015)
and their cross-modality rankings percentiles are illustrated

in Figure 2. As can be seen, PFIT regions (blue shaded) gen-
erally showed above average or high cross-modality rankings,
supporting the PFIT hypothesis.

Exploratory Analyses

The exploratory GEE model did not contrast PFIT to non-
PFIT regions, but instead included the region as a within-
group (“repeated measures”) vector nested within each of
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Table 2 Results of the GEE analysis contrasting PFIT to non-PFIT regions with performance, sex, age, age2, and the appropriate quality assurance
metric as independent vectors

Volume GMD MD CBF ALFF ReHo Nback Idemo

df χ2 P χ2 P χ2 P χ2 P χ2 P χ2 P χ2 P χ2 P

Perf 1 109.0 0.0000 135.1 0.0000 45.6 0.0000 94.0 0.0000 4.8 0.0292 9.8 0.0017 6.9 0.0084 2.6 0.1069

PFIT 1 119729.0 0.0000 9037.3 0.0000 0.3 0.6005 14853.0 0.0000 4617.2 0.0000 7887.2 0.0000 1235.1 0.0000 3122.7 0.0000

Sex 1 547.0 0.0000 17.8 0.0000 349.8 0.0000 7.0 0.0106 43.9 0.0000 11.1 0.0009 0.1 0.7307 5.6 0.0182

Age 1 63.0 0.0000 211.1 0.0000 12.2 0.0005 141.0 0.0000 87.8 0.0000 153.2 0.0000 0.1 0.7956 0.3 0.6182

Age2 1 1.0 0.3902 0.7 0.4065 7.7 0.0055 32.0 0.0000 0.8 0.3585 0.4 0.5137 0.1 0.7154 0.1 0.7061

QA 1 1.0 0.4591 235.1 0.0000 4.6 0.0324 2.0 0.1980 30 0.0000 30.9 0.0000 0.2 0.7001 4.3 0.0389

Perf∗PFIT 1 235.0 0.0000 5.7 0.0172 12.3 0.0004 44.0 0.0000 26.7 0.0000 24.6 0.0000 47.8 0.0000 33.5 0.0000

Perf∗Sex 1 1.0 0.2671 2.2 0.1394 5.9 0.0149 11.0 0.0009 0.2 0.6321 0.6 0.4432 0.8 0.3877 0.3 0.5640

PFIT∗Sex 1 465.0 0.0000 105.7 0.0000 279.0 0.0000 5.0 0.0328 0.7 0.3903 5.7 0.0166 5.9 0.0155 0.3 0.5824

Perf∗Age 1 4.0 0.0520 4.1 0.0430 0.1 0.7183 1.0 0.2236 0.1 0.7336 0.6 0.4405 0.1 0.8275 0.3 0.5724

Perf∗Age2 1 0.0 0.5722 0.1 0.7103 0.1 0.8271 0.0 0.5546 1 0.3094 0.1 0.8194 2.7 0.1036 0.2 0.6596

PFIT∗Age 1 1.0 0.2283 2.7 0.1002 76.5 0.0000 88.0 0.0000 7.1 0.0079 2 0.1600 3.3 0.0714 17.5 0.0000

PFIT∗Age2 1 0.0 0.6158 3.8 0.0498 1.4 0.2349 3.0 0.0631 11.4 0.0007 0.4 0.5261 3.8 0.0522 0.5 0.4708

Sex∗Age 1 8.0 0.0060 0.6 0.4386 10.2 0.0014 25.0 0.0000 0.1 0.7079 0.6 0.4357 0.0 0.8594 0.0 0.8325

Sex∗Age2 1 8.0 0.0047 0.1 0.8067 2.0 0.1605 5.0 0.0210 0.2 0.6488 1.4 0.2310 1.5 0.2166 1.4 0.2426

Perf∗PFIT∗Sex 1 1.0 0.2788 3.4 0.0655 8.5 0.0035 8.0 0.0037 2.4 0.1198 0.6 0.4293 0.0 0.9731 2.3 0.1280

Perf∗PFIT∗Age 1 5.0 0.0233 10.3 0.0013 1.2 0.2730 0.0 0.7808 0.3 0.5755 0.4 0.5144 0.0 0.8422 0.3 0.6045

Perf∗PFIT∗Age2 1 0.0 0.8277 0.7 0.4171 0.5 0.4924 0.0 0.7909 0.7 0.4003 0.1 0.7038 6.1 0.0133 0.0 0.8360

Perf∗Sex∗Age 1 1.0 0.2730 0.4 0.5266 4.2 0.0396 0.0 0.4874 8.6 0.0034 3.5 0.0630 0.0 0.8607 0.2 0.6797

Perf∗Sex∗Age2 1 1.0 0.2310 0.5 0.4883 0.0 0.9979 3.0 0.1134 2.8 0.0942 1.6 0.2037 0.7 0.4164 1.3 0.2624

PFIT∗Sex∗Age 1 6.0 0.0149 7.0 0.0081 0.9 0.3549 11.0 0.0010 0.5 0.4995 0.3 0.5795 0.1 0.8055 5.9 0.0150

PFIT∗Sex∗Age2 1 8.0 0.0044 13.0 0.0003 1.7 0.1868 0.0 0.7436 0 0.8558 0 0.9393 0.4 0.5480 0.3 0.5795

Perf∗PFIT∗Sex∗Age 1 1.0 0.3340 2.0 0.1598 2.3 0.1311 0.0 0.5492 1.6 0.2088 0 0.8712 0.0 0.8808 4.1 0.0440

Perf∗PFIT∗Sex∗Age2 1 1.0 0.3957 7.5 0.0061 1.5 0.2226 0.0 0.5524 0.2 0.6527 0.3 0.5629 0.1 0.8123 0.1 0.7339

Note: Perf = performance score; PFIT = parieto-frontal integration theory regions; QA = quality assurance metric; Bold = Significant; Bold Italics = Interacts with
Performance; Italics = Marginally significant interaction with performance.

the 8 brain sections. All other effects (performance, sex,
age, age2, and QA metric) were the same, and we tested
for all performance interactions in each of the 8 sections
(Supplementary Table S2). The results showed highly significant
(all P < 0.001) Performance∗Region interactions in each and every
modality for Fro, Tmp, and Par sections, and in all sections for
volume, GMD and NBack. These interactions indicate regionally
specific relations to performance in each brain section. Higher-
order interactions involving age and sex were absent for
volume but were highly significant in the other modalities,
indicating that for brain parameters other than volume the
relation between performance and brain parameters shows
developmentally related sex differences.

To characterize the involvement of different parameters
related to cognitive performance, we examined the cross-
modality rankings in non-PFIT regions to identify candidates
for inclusion in an ExtPFIT network—after controlling for
age, sex, and scan quality (including motion). As can be
seen in Figure 2, several regions were strong candidates for
ExtPFIT (brown shaded) by showing performance-related
cross-modality rankings that are comparable to those seen
in PFIT regions. These results suggest that the PFIT should
consider expansion to incorporate additional Fro (orbital,
inferior and precentral, and mid superior Fro gyrus [SFG]),
Tmp (temporal pole [TMP]) Par (supramarginal and angular
gyri) and occipito-Tmp cortex (lingual and fusiform), as well
as Lim (hippocampus [Hipp]) and baso-striatal (thalamus [Thal])
components.

To examine how these associations between brain param-
eters and performance are manifested in each modality and
how they develop in males and females, we plotted effect
sizes for PFIT and ExtPFIT regions. These results are detailed
below.

Neuroanatomic parameters
The regional distribution of the PFIT and ExtPFIT effect sizes,
contrasting high and low performers in children, adolescents,
and young adults on each of the neuroanatomic parameters are
shown in Figure 3.

As can be seen in Figure 3, for volume (upper row) all PFIT
regions show moderate to large effect sizes indicating higher
volumes in the high-performance groups across age groups and
in both males and females. This effect increased linearly with
advanced age in all regions for males, although there are several
PFIT regions where children and adults have larger effect sizes
than adolescents, while in females the effect reached adult
size already during childhood in some regions. Several ExtP-
FIT regions showed comparable effect sizes (Fig. 3, upper row,
regions under “Ext”), and they include the nucleus accumbens
(NA) and Thal, implicating reward and relay system components
in complex cognition. The Hipp is a Lim region that showed
similar effect sizes as the anterior and posterior cingulate, the
only Lim regions thus far implicated by PFIT (Basten et al. 2015).
Similarly, superior, midfrontal, and somatomotor cortex were
the only Fro regions included in PFIT, while our results indicate
equal or higher effect sizes for the medial SFG and orbital
(both inferior and posterior) cortex. Of the Tmp lobe regions,
in addition to inferior, superior, and midtemporal regions, the
TMP showed robust effect sizes, and for Par regions, the angu-
lar and supramarginal gyri showed similar effect sizes to the
PFIT precuneus (PCu) and the SPL. Finally, the Occ fusiform
cortex showed effect sizes similar and even exceeding the PFIT
midoccipital region.

For GMD, we observed considerably smaller effect sizes
compared with volume (Fig. 3, middle row). For PFIT relative
to non-PFIT regions, this association differed by sex and by
age2 (Table 2), and this was the case for the Fro, Par, and Occ

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa282#supplementary-data
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Figure 2. The image displays the number of modalities that ranked at the top when averaging P-value and effect sizes, colored by PFIT status (Statistical Analysis, third

section). PFIT regions are in shades of blue, and extended-PFIT (ExtPFIT) regions are in shades of red. The P-values and effect sizes are for the performance predicting
the normalized brain feature, controlling for normalized quality, age, age squared, and age cubed. Quality metrics are as follows: volume and GMD use the average
manual rating; MD uses the temporal signal to noise ratio; and CBF, ALFFs, ReHo, NBack, and IdEmo use the mean of the relative root mean square displacements. This

figure was made using the R package “ggseg” (Mowinckel and Vidal-Piñeiro, 2019).

lobes (Supplementary Table S2). High performers had higher
GMD in PFIT regions across age and sex groups, except for male
children, and in males, the effect sizes increased in most regions
from childhood (negative) to adolescence to young adulthood
(positive), while in females they remained generally stable
across age bins. ExtPFIT regions (Fig. 3, middle row, regions
under “Ext”) likewise showed small to moderate effect sizes
in the direction of higher values in the high-performance group,
with the largest effects in the adult males. The ExtPFIT regions
did not differ in performance group effects from the original
PFIT regions.

MD showed much larger effect sizes than GMD in the direc-
tion of lower values in high performers compared with low per-
formers (Fig. 3, lower row). Indeed, these effect sizes approached
those for volume in Fro, Tmp, and Occ PFIT regions, although not
in Par PFIT regions. These effects appeared across age groups but
became most pronounced with advanced developmental age,
especially in males. For the Par component of PFIT, this effect
was seen only in the SPL and not in PCu, and the effects on
Lim components of PFIT were in the opposite direction. Several
ExtPFIT regions, specifically Fro and Par, showed similar effect
sizes in the same direction, and the effect is evident in ExtPFIT
Par regions, where it was absent in PFIT Par regions.

Neurophysiologic parameters
Effect sizes for the neurophysiologic parameters are shown in
Figure 4. For CBF (Fig. 4, top row), PFIT regions showed small
to moderate effect sizes, some reaching −0.5 SDs, of lower
CBF associated with high performance. These associations
were stronger for males than females and showed bigger
increase from adolescence to young adulthood in males.
Several ExtPFIT regions showed similar effect sizes in the same
direction, including baso-striatal (NA and Thal) and Lim (Hipp)
regions.

For ALFF (Fig. 4, middle row), high performers had higher
values in most PFIT regions and across age groups with small
to moderate effect sizes (0.2 to 0.5 SDs), with the exception
of male children who showed moderate to large effect sizes
(up to −0.9 SDs) in the opposite direction. Similar effects were
seen in most ExtPFIT regions. Effect sizes for ReHo (Fig. 4, bot-
tom row) were of similar direction and magnitude to those for
ALFF.

Effect sizes for the activated fMRI are presented in Figure 5.
The results for the working memory (NBack) task (upper row)
give remarkably strong support for the narrow PFIT model, as
moderate to large effect sizes are seen across the age groups
for Fro and Par regions from the original PFIT. Notably, the Thal,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa282#supplementary-data
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Figure 3. Developmental and sex effects for the association between structural brain features and high versus low performers are displayed. Effects shown are for

volume (upper panel), GMD (middle panel), and MD (lower panel). Females (F) and males (M) are in white (children), gray (adolescents), and black (adults). Effect
sizes are the coefficients for the indicator variable for the high compared with low performers predicting the scaled brain feature, controlling for scaled quality,
age, age squared, and age cubed within each age bin. The quality metric for volume and GMD is the average manual rating, and for MD is the Tmp signal to noise
ratio. The subset of non-PFIT regions that rank at or above PFIT regions, and therefore are considered for the ExtPFIT, are also displayed. Horizontal dashed lines

indicate the transition from small to moderate effect sizes. Regional abbreviations: Cau = caudate nucleus; ACgG = anterior cingulate gyrus; PCgG = posterior cingulate
gyrus; MFG = middle frontal gyrus; SMC = supplementary motor cortex; MSFG = superior frontal gyrus medial segment; OrIFG = orbital part of the inferior frontal gyrus;
POrG = posterior orbital gyrus; ITG = inferior temporal gyrus; MTG = middle temporal gyrus; STG = superior temporal gyrus; AnG = angular gyrus; SMG = supramarginal
gyrus; MOG = middle occipital gyrus; OFuG = occipital fusiform gyrus.

from the ExtPFIT, shows a similar effect size, supporting its role
in cognition. In contrast to the NBack, effect sizes are generally
negligible to small for the emotion identification task (Fig. 5,
lower row).

Cerebellum and WM. As can be seen in Fig. 6, moderate to large
effect sizes separating high and low performers were seen for
volume in some cerebellar regions and all WM regions. These
effect sizes were seen in all age groups but were most pro-
nounced in the oldest group of young adult males, where they
reached and sometimes exceeded 1SD. For WM, MD, and CBF
showed small to moderate effects in the direction of lower val-
ues associated with better performance. The cerebellar regions
showing the most robust effect sizes were lobules 8–10 and
exterior cerebellum. Effect sizes in other modalities measured
were small to moderate; they are shown for future reference and
will not be further discussed.

Data-Driven Analyses

Each modality considered alone explained at least 9% of the
variance in performance, estimated out-of-sample, with vol-
ume explaining the greatest proportion of the variance for both
females and males (31.9 and 32.1%, respectively). However, since
in this age range of 8–22 years both performance and brain

parameters are highly correlated with age, we aimed to estab-
lish how much variance in performance is explained by brain
parameters above and beyond age. We found that volume, GMD,
NBack activation, and all of the modalities combined explained
a significant amount of variance in cognition above and beyond
the age for females, while the only volume did so for males
(Fig. 7).

Discussion
Our results offer fresh insights regarding how cognition is
related to multimodal parameters of brain structure and
function. Global values for anatomic and physiologic parameters
were associated with performance in modality-specific ways.
Overall, high cognitive performers had anatomically higher
volumes, higher GMD and lower MD, and physiologically they
evinced lower CBF and higher activation to the NBack task. In
all those modalities, the age effects were significant and effect
sizes separating high from low performers generally increased
with age. Performance associations with global ALFF and ReHo
were more complex and differed between males and females.
Regional analyses (see below) indicated more consistent effects
in specific regions. The results of the global values indicate
that the brain parameters examined relate meaningfully to
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Figure 4. Developmental and sex effects for the association between functional brain features and high versus low performers are displayed. The quality metric for

CBF, ALFFs, and ReHo is the mean of the relative root mean square displacements. All other values, legends, and abbreviations are as in Figure 3.

performance and that this relationship is strengthened during
development.

The theoretical thrust of the analysis was to examine
whether anatomic and physiologic indices derived from the
network of regions included in PFIT indeed show association
with cognitive performance, and whether other regions show
similar performance associations warranting their inclusion in
an ExtPFIT network. We found strong support for cross-modality
involvement of PFIT regions, which showed significantly
greater association with cognitive performance than non-PFIT
regions in all modalities (see Table 2), and these relations
were modulated only by age for volume and by higher-order
interactions of age and sex for other parameters. Examination
of effect sizes contrasting high and low performers indicated
that they were large (up to >1 SDs for adult males, see Figure 3
top row) for higher volume and moderate for higher GMD, lower
MD, lower CBF, higher ALFF, and ReHo, and greater activation
to the NBack task. The amplitude and direction of results in
this multimodal study are consistent with the literature and
meta-analyses where subsets of these parameters have been
examined in specific studies (Ritchie et al. 2015; Ryman et al.
2016; Gençet al. 2018; Yan et al. 2011; Hshieh et al. 2017; Rane
et al. 2018; Pamplona et al. 2015; Vakhtin et al. 2014; Finn et al.
2015; Yoo et al. 2018; Fong et al. 2019; Greene et al. 2018, Dubois
et al. 2018).

However, several regions not included in PFIT showed com-
parable cross-modality effect sizes and merited consideration
for inclusion in an extended PFIT. These regions included
some that surround the original PFIT regions, indicating that
larger portions of Fro, Tmp, Par, and Occ cortex are involved in

optimizing complex cognition. The Fro regions that should be
considered for inclusion in ExtPFIT are adjacent to the PFIT
but more posterior (somatosensory gyrus), medial (medial
SFG), and inferior (orbital), suggesting the contribution of top–
down regulatory systems for cognitive performance (Hampshire
et al. 2010; Swick et al. 2008; Rolls and Grabenhorst 2008;
Wojtasik et al. 2020). The Par candidates for ExtPFIT are the
supramarginal and angular gyri, regions long implicated in
complex cognition (Geschwind 1970; Tremblay and Dick 2016),
as is the TMP, a region implicated in multimodal sensory
integration (Olson et al. 2007) and social cognition (Pehrs
et al. 2017), underscoring the role of Tmp lobe connectivity
in complex cognition (Blazquez Freches et al. 2020). The Occ
region that could be included in ExtPFIT, fusiform gyrus, is
involved in high-order visual processing and would contribute
visual memory and concept formation (Mechelli et al. 2000).
In addition to these cortical areas, baso-striatal and Lim
regions should be considered for ExtPFIT in addition to the
caudate and cingulate included in the PFIT. The ExtPFIT seems
to include the accumbens and Thal, reinforcing the striatal
component that implicates motivational aspects of cognitive
performance. Indeed, subcortical regions have been implicated
in higher-order cognitive function and memory (Koziol et al.
2014; Münte et al. 2008; Wolff and Vann 2019), and ventral
striatum activation signaling internal reward during NBack
correlated with performance in the PNC (Satterthwaite et al.
2012). The Lim region added to the ExtPFIT model is the Hipp,
implicating contributions of emotion regulation and episodic
and contextual memory integration (Puigdemont et al. 2012,
Aminoff et al. 2013). Thus, the original PFIT emphasized Fro and
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Figure 5. Developmental and sex effects for the association between performance (our main cognitive performance measure, which was obtained out of scanner) and

activation on the NBack and IdEmo tasks in the same regions as in previous Figures. The quality metric for these effects is the mean of the relative root mean square
displacements. All other values, legends, and abbreviations are as in Figure 3.

Figure 6. Developmental and sex effects for the association between performance and cerebellar and white matter features comparing high versus low performers.

Quality metrics are as described for each modality in the above captions. Abbreviations: C1–5 = cerebellar layers I to V; C6–7 = cerebellar layers VI to VII; C8–10 = cerebellar
layers VIII to X; CExt = cerebellar exterior; Ins = Insular. Other values and legends are as in Figure 3.

Par regions and subsequent meta-analyses implicated some
additional Tmp, Occ, Lim, and striatal regions as important
nodes of the complex cognition network. Our results from
a multimodal study of a single large sample indicate that
the network should be broadened, and optimal cognitive
performance relates to a multimodal network with the robust

representation of regions required for integrating conceptual
processing with perception, memory, emotion regulation, and
motivation.

Additional regions that show robust effect sizes related to
performance were found in the cerebellum, specifically exterior
and lobules 8–10. The cerebellum, traditionally considered
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Figure 7. Results of ridge regressions predicting the executive functioning and complex cognition factor score for each modality and using all modalities (“All”). The
distributions shown are out-of-sample R2s over 10 000 iterations. For each R2, a random half of the data was assigned to the training set, and the other half was
assigned to the test set. R2 was calculated using the following formula: 1 − SSres

/
SStot

. The ridge hyperparameter lambda was chosen using 5-fold cross-validation on
the training data. The lambda that minimized the out-of-sample MSE was selected. Asterisks indicate if adding the penalized brain features to the model with age

explained significantly more variance in cognition than age alone.
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primarily in relation to motor function and coordination, has
been increasingly recognized as a hub related to cognition
(Koziol et al. 2014) and these regions within the cerebellum
have been specifically implicated in cognition (Tedesco et al.
2011). In addition, all WM regions showed sizable effect sizes,
ranging from 0.4 to >1 SD, with better performance associated
with higher volumes, as well as reduced MD and CBF. These
findings indicate that WM integrity and tuning contribute to
optimize cognitive performance.

The sample’s age range from childhood to young adulthood
allowed examination of developmental effects and sex differ-
ences in the magnitude of effect sizes related to performance.
For volume, these effect sizes were stable across age groups,
with a significant interaction with age showing that they tend
to increase in size from childhood to adulthood. For the other
modalities, the results showed higher-order interactions with
age and sex, indicating that these parameters become optimized
for performance over development at different rates in males
and females. The sex differences overall seem to indicate
complementary mechanisms in males and females that serve
to compensate for sex differences across brain parameters.
Sex differences in brain-behavior associations have been well
documented (e.g., Goldstein et al 2001; Gur et al. 1982, 1999,
2000; Jazin and Cahill 2010; Ragland et al. 2000; Raznahan
et al. 2011; Satterthwaite et al. 2015). Thus, lower volume
in females is compensated for by higher GMD, and performance
is further modulated by MD, CBF, ALFF, and ReHo, which may
together account for equal cognitive performance. Furthermore,
age-related differences in this developmental cohort were
smaller for females than for males, indicating that females
reach adult differences earlier, consistent with other studies
(Erus et al. 2014; Goyal et al. 2019). We might speculate that
earlier stabilization of metabolic parameters in females helps
sustain brain integrity throughout the adult lifespan. Such
complementarity between the sexes might have enhanced sur-
vival and reproduction in humans’ environment of evolutionary
adaptedness (Barkow et al. 1995). These sex differences could
further reflect complementary reliance on different aspects of
brain structure and function to optimize cognitive performance.

The data-driven analysis indicated that volume was far and
away the brain parameter most strongly associated with cogni-
tive performance, confirming earlier findings associating higher
brain volumes with better cognitive abilities (Witelson et al.
2006; Gignac and Bates, 2017; Nave et al. 2019; Pietschnig et al.
2015). In our sample, effect sizes separating high from low-
performance groups were moderate to large, and cross-validated
R2s for predicting performance based on volume alone exceeded
0.3 for both females and males (see Fig. 7). This estimate of
explained variance is at the upper range of estimates from prior
studies, which vary from 3% to >30%. Most previous studies
to which we can compare our results examined volume. Our
R2 values are considerably higher than those reported for vol-
umes by Nave et al. (2019), who estimate that volume explains
slightly over 3% of the variance in cognitive performance in an
adult sample (age range 40–69 years). Possibly the more exten-
sive battery on which our performance measure was based,
as well as the use of the same scanner, could have elimi-
nated some sources of noise in estimating the dependent mea-
sures. We also established that high GMD relates to better per-
formance, although the variance explained beyond age was
more modest (5.58% of the variance for females and 3.56% for
males). The other parameters showed smaller predictive power,
except for the activation to the NBack task, which uniquely

explained a substantial amount of out-of-scanner performance.
These results are consistent with earlier work showing that
task-activated fMRI is a better predictor of performance than
resting-state measures (Greene et al. 2018; Yoo et al. 2018).
Overall, considering the inherent error in all our measurements,
these results indicate a substantial coupling between cognitive
performance and parameters of brain structure and function.

It is notable that CBF was measured at a resting state, char-
acterized as the “default mode” (Raichle et al., 2001) condition.
Our finding that lower resting-state CBF is associated with better
overall performance is consistent with reports that deactivation
of the default-mode network during task performance is as
predictive of performance as activation of task-related regions
(Satterthwaite et al., 2013). A lower basal metabolic rate, as
indicated by lower basal CBF, could be indicative of greater
metabolic efficiency and potentially suggest a greater dynamic
range in brain function. Thus, a lower “idling rate” may be
conducive to better performance by permitting activation when
the individual is faced with a task while preserving energy in the
absence of a task.

Several limitations of this study are noteworthy. First and
foremost, the study is cross-sectional and therefore unable to
evaluate developmental trajectories of performance and brain
parameters. All conclusions regarding age-related differences
are limited by this feature of the data and longitudinal studies
are needed to establish trajectories of the observed associations.
The age range of the sample, 8–22 years, limits generalizabil-
ity to other ages. Within this age range, in which age-related
differences were seen in all brain modalities examined, the
performance-related differences were generally consistent and
replicated in all age groups. Another limitation of the study
was the focus on a single parameter of cognitive capacity. This
focus was necessitated by the complexity of probing multiple
brain regions across modalities and accounting for age effects
and sex differences. The measure selected is the closest proxy
for “IQ,” which was used in other studies and thus improves
comparability of results. Future analyses can focus on other
performance domains, such as episodic memory and social
cognition, and more specific aspects of performance, such as
accuracy compared with speed. The study is also limited by
analyzing data across the entire sample, which is quite heteroge-
neous and, while ascertained through general pediatric services
and not psychiatric services, still included individuals with sig-
nificant psychopathology (Calkins et al. 2015) and adverse life
events (Barzilay et al. 2019, 2020), and from diverse sociodemo-
graphic, ethnic and racial backgrounds. Perhaps stronger and
more coherent effects could be seen if we limited the analyses
to the subsample of typically developing youth without any
significant disorder or to more homogeneous populations. We
believe that while such analyses have merit and could reveal the
effects of different disorders on the observed relationships, the
heterogeneity and diversity of our sample enhance the general-
izability of the reported results. Additionally, our analyses exam-
ined regional parameters of brain structure and function and
related them to individual differences in behavioral measures
of cognitive performance taken within the same timeframe, but
not contemporaneously in the scanner. More variance in behav-
ioral measures could be linked to functional brain parameters
acquired contemporaneously (Roalf et al. 2014b). Finally, our
analyses are limited by variability among parameters in the reli-
ability of measures and by the high dimensionality of the data
necessitating control for multiple comparisons. The reliability
of the measures used in this study is acceptable to high, and
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we have incorporated approaches to reduce data dimensionality
and contain Type I error, but our approach may have obscured
important findings that future work, better addressing these
issues, can reveal.

Notwithstanding its limitations, the present study provides
some “benchmarks” for assessing relations among brain param-
eters and performance. The results can guide hypotheses on
how brain structure and function relate to individual differences
in cognitive capacity, and offer the ability to gauge the relevance
to cognitive performance of group differences or changes in
brain parameters. Furthermore, acquisition of each parameter
is costly in time and data management resources, and our
study can inform the design of future large-scale neuroimaging
studies based on the relevance of associating acquired brain
parameters with cognitive performance. Since volume and GMD
measures can be obtained rapidly and have shown the least
susceptibility to QA failure in our data, they have key advan-
tages in studies seeking to establish neural substrates of cog-
nition. Activated fMRI can offer more specific associations to
performance than resting-state physiologic measures, and mul-
timodal collections including future efforts at multivariate inte-
gration across modalities could take advantage of their com-
plementary strengths and weaknesses. Our finding of lower
resting CBF in high performers is worthy of special emphasis
since, unlike the structural parameters of volume, GMD, and
MD, it relates to brain function. Uncovering a physiologic index
associated with individual differences in cognitive performance
has important implications for developing a scientific basis
for social and medical prevention, education, and intervention
strategies. Anatomy is unlikely to be readily affected by behav-
ioral or pharmacologic treatment. By contrast, physiologic states
such as measured by CBF, ALFF, ReHo, and BOLD activation,
can be changed within seconds, and it is easier to conceive
of treatments that can affect resting-state CBF for sustainable
durations. Our results suggest questions for future investiga-
tion. For example, current methods for rehabilitation of brain
dysfunction emphasize activation of task-related brain systems.
Our findings that lower resting CBF and increased resting-state
connectivity are associated with better performance suggest
that emphasis should also be placed on training in the deacti-
vation of task-relevant regions in the absence of a task. Indeed,
our results may offer an avenue for future scientific probing of
the benefits of procedures such as meditation, which emphasize
relaxation associated with the absence of goal-oriented behavior
and results in reduced default-mode activity (Brewer et al. 2011;
Hasenkamp and Barsalou 2012). That both greater volume and
GMD of brain and lower basal metabolic rate are associated with
cognitive abilities is consistent with the preservation of tissue
at low energy consumption as the “holy grail” for optimal organ
function.
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