
Nature Neuroscience | Volume 26 | February 2023 | 316–325 316

nature neuroscience

Article https://doi.org/10.1038/s41593-022-01228-w

A neuromarker for drug and food craving 
distinguishes drug users from non-users

Leonie Koban    1,4 , Tor D. Wager    2,5  & Hedy Kober    3,5 

Craving is a core feature of substance use disorders. It is a strong predictor 
of substance use and relapse and is linked to overeating, gambling, and 
other maladaptive behaviors. Craving is measured via self-report, which is 
limited by introspective access and sociocultural contexts. Neurobiological 
markers of craving are both needed and lacking, and it remains unclear 
whether craving for drugs and food involve similar mechanisms. Across 
three functional magnetic resonance imaging studies (n = 99), we used 
machine learning to identify a cross-validated neuromarker that predicts 
self-reported intensity of cue-induced drug and food craving (P < 0.0002). 
This pattern, which we term the Neurobiological Craving Signature (NCS), 
includes ventromedial prefrontal and cingulate cortices, ventral striatum, 
temporal/parietal association areas, mediodorsal thalamus and cerebellum. 
Importantly, NCS responses to drug versus food cues discriminate drug 
users versus non-users with 82% accuracy. The NCS is also modulated by a 
self-regulation strategy. Transfer between separate neuromarkers for drug 
and food craving suggests shared neurobiological mechanisms. Future 
studies can assess the discriminant and convergent validity of the NCS and 
test whether it responds to clinical interventions and predicts long-term 
clinical outcomes.

Craving—a strong desire to use drugs or to eat—has long been con-
sidered a core factor driving overeating and substance use1, thereby 
contributing to the top three preventable causes of disease and 
death2. In 2013, it was added as a diagnostic criterion for substance 
use disorders (SUDs) in the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition3, underscoring its clinical signifi-
cance. Importantly, cue-induced craving, which arises in response 
to drug-related or food-related stimuli, is known to prospectively 
predict eating unhealthy foods (that is, ultra-processed foods high 
in sugar and saturated fat), weight gain, drug use and relapse (for 
meta-analyses, see refs. 4–6). Because it is a common predictor across 
multiple conditions (including SUDs, obesity, and eating disorders) 
and maladaptive behaviors, it may constitute a transdiagnostic 
 risk factor.

Although self-reported craving has been useful clinically as well 
as experimentally, there is growing recognition of the need to under-
stand its biological basis. Human neuroimaging studies have identi-
fied circuits related to substance use risk, incidence, and sequelae7,8. 
Some circuits, including ventromedial prefrontal cortex (vmPFC), 
ventral striatal/nucleus accumbens (VS/NAc) and insula, have been 
identified across SUDs, outcomes, and risky behaviors, and have been 
identified as key regions underlying addiction in animal models9–13. 
Alongside homeostatic circuits in hypothalamus and brainstem, these 
regions have been identified in studies of food valuation and dietary 
decision-making14,15 and appear to be functionally related to weight 
gain and obesity16,17. These circuits can be targeted by neurostimula-
tion, pharmacological, psychological, and behavioral interventions18, 
providing new avenues for therapeutic intervention.
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testing whether treatments engage their intended craving-related 
neural targets20. It is increasingly apparent that many mental states and 
related outcomes have a highly distributed brain basis, including emo-
tion21,22, pain23, perception24, object recognition25, memory retrieval26, 
sustained attention27, semantics28, and autonomic responses29. 
Accordingly, measures that integrate across brain systems can pro-
vide sensitive, specific, and generalizable characterizations of the 
neurophysiological underpinnings of behavior30. They can also predict 
health-related outcomes with larger effect sizes than measures based 
on single regions, in many cases31.

Nevertheless, although great strides have been made in the under-
standing of substance misuse, overeating and related phenomena, 
understanding of the neural basis of craving is still incomplete, and 
neural targets for monitoring craving and SUDs and for examining 
the efficacy of interventions are lacking. Although the neuroimaging 
literature on craving is growing, craving cannot be directly measured 
in non-humans19. In addition, understanding that any specific brain 
region is involved in craving or other outcomes does not imply that we 
can decode craving from the brain or that we have a sufficiently precise 
measurement model to allow for monitoring of individual people or 
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Fig. 1 | Study design and analytic approach. a, In the Regulation of Craving task, 
participants were presented with a series of photographs depicting either drugs 
(cigarettes, alcoholic drinks or cocaine) or highly palatable food items. Before 
presentation of the cues, participants were instructed (2-second written cue) 
to consider either the immediate consequences of consumption of the items 
(‘NOW’ condition) or their negative (typically long-term) consequences (‘LATER’ 
condition). At the end of each trial, participants rated their craving (‘How much 
do you want this?’) using a 1–5 Likert scale. b, The present study employed the 
pooled data from three previous studies (five groups of participants). Study 1 
tested the Regulation of Craving task (displaying cigarette and food cues) in 21 
heavy smokers (Study 1a) and 22 non-smokers (Study 1b; see details in Methods). 
Study 2 tested the Regulation of Craving task (displaying alcohol and food cues) 
in participants fulfilling diagnostic criteria of alcohol use disorder (n = 17; see 
details in Methods). Study 3 tested the Regulation of Craving task (displaying 

cocaine and food cues) in 21 individuals with cocaine use disorder (Study 3a) and 
18 matched non-users (Study 3b; see details in Methods). c, For each participant 
from all five studies, we computed brain activation images (β-estimates) for each 
level of craving (1–5). These images were then used in a LASSO–PCR machine 
learning algorithm to predict level of craving (1–5) based on brain activity. Cross-
validation (ten-fold stratified for studies and participant populations) allowed 
assessment of (1) predictive accuracy of the pattern for craving; (2) whether it was 
differentially activated for drug versus food cues; (3) whether it was differentially 
activated for the two regulation conditions (NOW versus LATER); and (4) whether 
the pattern can differentiate drug users from non-users. d, Permutation test 
results. Null distributions are plotted in blue bars, observed accuracy measures 
as red lines. For all measures, none of the permutation samples performed as well 
as the observed results (all P < 0.0002). MAE, mean absolute error; MSE, mean 
squared error; RMSE, root-mean-square error.
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Such predictive models—also called ‘neuromarkers’ or ‘signa-
tures’—have multiple potential uses32–34. They can predict risk for future 
disorders, identify subtypes (or biotypes) that predict who will respond 
to a treatment, and, perhaps most importantly, serve as mechanistic 
targets for interventions. They can also outperform subjective meas-
ures in predicting human choices35 and can be linked with systems and 
cellular neuroscience to develop new biological treatments in ‘reverse 
translation’ approaches19. Accordingly, there is increasing recognition 
of the need to develop biomarkers based on human systems that can 
be compared with animal models33,34,36. However, such an approach 
has rarely been applied in addiction37 and has not yet been applied to 
craving.

In this study, we took a first step toward a neuromarker that pre-
dicts the intensity of drug and food craving in clinical and matched 
control samples. We integrated data from five different cohorts in 
three functional magnetic resonance imaging (fMRI) studies across 
different types of drug users (cigarettes, alcohol and cocaine) and 
non-users (a total of 469 contrast images from n = 99 participants). 
Across studies, participants were presented with visual cues of drugs 
and highly palatable food items. We then used machine learning to 
identify a distributed functional brain activity pattern that predicted 
the intensity of craving.

We term the resulting pattern the Neurobiological Craving Sig-
nature (NCS), and we hope that this name reduces ambiguity and 
provides a reference point for the pattern’s future reuse and testing 
in new samples. Analyses related to the NCS allow us to address sci-
entific questions related to the organization of craving-related brain 
systems across drugs and food (or other rewarding stimuli) and their 
susceptibility to cognitive, pharmacological and other interventions. 
Furthermore, recent perspectives have proposed a common neuro-
physiology for SUDs and obesity and of drug and food craving more 
specifically38–40, but this view has been challenged41. The NCS allows us 
to test whether craving for several types of drugs, including stimulants 
(nicotine and cocaine) and sedatives (alcohol), and for highly palatable 
foods are based on different or shared neurophysiological patterns. 
We further assess whether the brain systems involved in cue-induced 
craving are affected by cognitive regulation strategies, highlighting 
the malleability of craving-related brain patterns to interventions 
and, thus, opening avenues for developing further interventions and 
improving existing ones.

Results
Data overview
A total of 469 contrast images from 99 participants and five independ-
ent cohorts were used for training and testing the pattern to predict 
drug and food craving (two drug-using cohorts, two of their matched 
controls and another sample of drug users with no matched controls). 
All participants viewed images of drugs and food under two instruction 
conditions: a craving instruction and an instruction to use a cognitive 
strategy to reduce craving (Methods). Contrast images were computed 
for the onset of the visual drug and food cues (Fig. 1a) separately for 
each level of craving (1–5 Likert scale) for every participant (Supple-
mentary Fig. 1) and were rescaled by the image-wise L2 norm to remove 
any differences in scale between participants and scanners.

fMRI results
Description of the NCS. Parallel to previous studies on fMRI-based 
prediction of pain and emotion21,23, least absolute shrinkage and selec-
tion operator–principal component regression (LASSO–PCR) and 
study-stratified ten-fold cross-validation was used to predict the level of 
craving based on fMRI contrast images. The advantage of this approach 
is that it does not require a similar level of craving across food and drugs 
(or across participants and studies), because it predicts continuous, 
dimensional craving intensity ratings. Variance in self-reported craving, 
both within and between participants, is beneficial for the LASSO–PCR 

algorithm. Model training identifies a pattern of weights across voxels 
such that the weighted average activity is optimized to predict crav-
ing in a training sample of participants, and its predictive accuracy is 
validated in independent participants. The NCS is a model that consists 
of the weights (plus an overall intercept), which can be applied to any 
brain image to obtain a weighted average over brain voxels, yielding a 
single score per test image. If weights in a brain area are positive, more 
activity indicates higher predicted craving; if they are negative, more 
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Fig. 2 | Thresholded display of the NCS. Note that unthresholded patterns 
are used for prediction; this thresholded pattern is shown for illustration 
at P < 0.005 uncorrected. a, Medial, lateral and insula displays of the most 
consistent pattern weights. b, Pop-out rectangles show the multivariate pattern 
for selected clusters of interest. Warm (yellow-red) color indicates positive 
weights; cold (cyan-purple) color indicates negative weights in predicting drug 
and food craving. P values are based on bootstrapping and indicate the areas that 
contribute most consistently with positive or negative weights. See Table 1 for a 
list of FDR-corrected weights. The NCS weight map and code to apply it to new 
data are available for download at https://github.com/canlab/Neuroimaging_
Pattern_Masks/tree/master/Multivariate_signature_patterns/2022_Koban_
NCS_Craving. aMCC, anterior midcingulate cortex; sgACC, subgenual anterior 
cingulate cortex; SMA, supplementary motor area.
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activity indicates lower predicted craving. Figure 2 presents a thres-
holded display of the resulting weight map based on bootstrapping. 
Although the unthresholded map (Supplementary Fig. 2) is used for 
prediction, the thresholded map illustrates the brain areas that most 
robustly contribute positive or negative weights to the predictive 
pattern. Areas with positive weights included vmPFC, dorsal anterior 
cingulate cortex, subgenual cingulate/ventral striatum, retrosplenial 
cortex, parietal and temporal areas, cerebellum and amygdala. Nega-
tive weights were found in visual areas, lateral prefrontal and parietal 
and somatomotor areas, among others (see Table 1 for a list of false 
discovery rate (FDR)-corrected coordinates). Of note, many areas, 
including somatomotor cortex, parietal and temporal cortex, and 
bilateral insula, included clusters of both positive and negative weights.

Predictive performance of the NCS. The trained pattern resulted in a 
cross-validated prediction–outcome correlation of r = 0.53 (standard 
deviation ± 0.46) within-person and r = 0.34 across all data points, with 
a mean absolute error of 1.30 points on the 1–5 Likert scale. A multi-level 
general linear model (GLM) confirmed a strong relationship between 
out-of-sample predicted and actual level of craving with a large effect 
size (β = 0.38, standard error [STE] = 0.04, t(98) = 9.21, P < 0.0001, 

Cohen’s d = 0.93; Fig. 3). The strength of the predictive performance 
varied across datasets but was significant in all five cohorts, with effect 
sizes (Cohen’s d) ranging from 0.55 to 1.48 (Table 2). Statistically con-
trolling for white matter and ventricle signal did not alter these results 
(that is, the relationship between craving ratings and NCS remained 
significant (β = 0.35, STE = 0.05, t(97) = 6.81, P < 0.0001), whereas the 
relationship of white matter and ventricle signals with craving was 
not (β = 2.53, STE = 1.77, t(97) = 1.43, P = 0.16). Adding scanner site, 
group (drug users versus controls), sex, age, education, body mass 
index and average head motion as second-level covariates also did not 
alter the relationship between craving and NCS (β = 0.38, STE = 0.04, 
t(79) = 9.17, P < 0.0001). Although the NCS predicts craving in both 
users and non-users, users versus non-users had significantly higher 
overall NCS responses (β = 0.38, STE = 0.18, t(79) = 2.13, P = 0.036) 
and smaller effect of craving ratings on out-of-sample NCS-predicted 
responses (that is, a smaller slope, β = −0.14, STE = 0.05, t(79) = −2.97, 
P = 0.004), potentially because users may report ratings less reliably or 
have less neurotypical brains. None of the other covariates significantly 
affected the NCS or interacted with ratings to affect NCS responses. 
NCS responses did not significantly change over time during the experi-
ment (Supplementary Fig. 3).

Table 1 | Clusters of FDR-corrected bootstrapped weights of the NCS

Region name Volume (mm3) x y z Max(z) Atlas region (see 
note)

Large-scale network/structure 
(see note)

Positive weights

Postcentral gyrus/somatosensory cortex 405 −42 −27 60 4.7279 3b L SomatomotorA

Inferior temporal gyrus 189 57 −48 −15 4.6653 TE1p R Fronto Parietal B

Cerebellum 297 −48 −63 −39 4.659 Cblm CrusI L Cerebellum

Subcallosal gyrus/ventral striatum 135 12 6 −21 4.5203 pOFC R Limbic

Superior frontal gyrus/dorsolateral 
prefrontal cortex

270 −24 33 54 4.4567 8BL L Default Mode B

Rostral gyrus/vmPFC 162 −6 51 3 4.3707 a24 L Default Mode A

Retrosplenial cortex 27 −3 −54 15 4.2439 v23ab L Default Mode A

Inferior parietal lobule 108 30 −63 45 4.235 IP1 R Dorsal Attention A

Supramarginal gyrus 54 57 −33 45 4.2191 PF R Ventral Attention A

Supraparietal lobule 27 −12 −60 60 4.0332 7Am L Dorsal Attention B

Thalamus 108 0 −9 6 4.0137 Thal MD Diencephalon

Angular gyrus 27 57 −36 21 3.9646 PSL R Temporal Parietal

Middle frontal gyrus 27 −42 39 18 3.8987 46 L Ventral Attention B

Lateral occipital 27 51 −72 −18 3.8826 PH R Dorsal Attention A

Negative weights

Postcentral gyrus/somatosensory cortex 2025 −51 −21 51 −7.5193 1 L Somatomotor A

Middle temporal gyrus 243 54 −63 6 −4.8288 TPOJ2 R Dorsal Attention A

Superior occipital gyrus 108 18 −84 45 −4.5147 V6A R Visual Peripheral

Angular gyrus 162 42 −60 33 −4.5105 Pgi R Default Mode C

Visual cortex 81 39 −72 −18 −4.4118 PIT R Visual Central

Superior temporal gyrus 27 54 −3 0 −4.187 Pbelt R Somatomotor B

Precuneus 27 9 −63 33 −4.052 POS2 R Fronto Parietal C

Superior parietal lobule 27 −12 −57 75 −3.9052 7AL L Dorsal Attention B

Visual cortex 27 0 −84 6 −3.8653 V1 R Visual Peripheral

Angular gyrus 27 −51 −60 54 −3.8516 PFm L Fronto Parietal B

Note: Significant positive and negative weights contributing to the NCS (FDR-corrected q < 0.05 across the whole-brain gray matter mask). Cortical atlas regions are labeled based on a 
combination of parcellations available on GitHub (see Methods for details): https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcellations/2018_Wager_
combined_atlas. This repository includes multiple atlases and other meta-analytic and multivariate maps. Tools for manipulating and analyzing this and other atlases are in the CANlab Core 
Tools repository: https://github.com/canlab/CanlabCore.

http://www.nature.com/natureneuroscience
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Classification of high versus low craving. We next assessed the 
accuracy of the NCS to differentiate between high versus low levels of 
craving. Forced-choice binary classification of highest versus lowest 
levels of craving per participant was achieved with a cross-validated 
accuracy of 81% +−4.0% STE, binomial test P < 0.0001 (sensitivity = 81%, 
specificity = 81%, area under the curve (AUC) = 0.91; Fig. 3). Even across 
participants (single-interval classification), this pattern separated brain 
responses to the highest versus lowest individual levels of craving with 
72% cross-validated accuracy (±3.4% STE, binomial test P < 0.0001, 
sensitivity = 64%, specificity = 80%, AUC = 0.76). Although this level of 
predictive accuracy does not provide perfect separation of high versus 
low craving, it is remarkable, because all stimuli were drugs or highly 
palatable food items; thus, differences in classification performance 
were not driven by external stimulus characteristics but by the personal 
history and internal motivational states of the participants.

Our studies did not include in-scanner ratings other than craving 
ratings. We, therefore, assessed whether the NCS does indeed predict 
something specific to craving that is not predicted by other brain sig-
natures, which are trained to predict other types of affect ratings. For 
this purpose, we applied five recently developed brain signatures42—
trained to predict four different types of negative affect (mechanical 
pain, thermal pain, aversive sounds and unpleasant pictures) and 
domain-general negative affect—to the data from Studies 1–3 and 
tested whether these other brain signatures would predict high versus 
low craving with similar accuracy as the NCS. The results of this control 
analysis confirmed that other signatures trained to predict affective 
ratings did not significantly predict high versus low cravings but were 
at chance level (46–52% accuracy; Supplementary Fig. 4).

Differentiating drug users from non-users. We next tested whether 
individual craving pattern responses to drug and food cues could be 
used to predict whether a participant was a drug user or a non-user (see 
Fig. 4a for group averages, Fig. 4b for individual effects and Fig. 4c for 
receiver operating characteristic plots). Although pattern expression 

in brain responses to food cues did not significantly differentiate drug 
users from non-users (60% accuracy ± 4.9% STE, P = 1.00, AUC = 0.40), 
NCS pattern responses to drug cues significantly classified drug users 
from non-users, with 75% accuracy (±4.4% STE, P = 0.002311, sensitiv-
ity = 86%, specificity = 57%, AUC = 0.76). When testing the pattern 
response to the drug>food contrast, the response in the NCS separated 
drug users from non-users with 82% accuracy (±3.9% STE, P < 0.001, 
sensitivity = 97%, specificity = 60%, AUC = 0.87; Fig. 4c).

Given slight but significant differences in years of education 
between users and non-users, we used a GLM to control for years of 
education and other basic demographic variables (age and biologi-
cal sex) in predicting individual differences in NCS response. This 
showed that drug users had stronger NCS responses to drug cues than 
non-users (t(94) = 4.22, P < 0.001, 96% confidence interval (CI): 0.57, 
1.55, Cohen’s d = 0.87) and stronger NCS responses to drug>food cues 
(t(94) = 7.04, P < 0.001, 96% CI: 0.90, 1.60, Cohen’s d = 1.45), whereas 
education, age and sex were not associated with NCS responses to 
drugs or drug>food cues (all P > 0.20).

In addition, we tested whether the classification of drug users 
versus non-users could be driven by any single study (or user group) 
alone or whether they are significant in each study independently. We 
performed the classification analysis separately on Studies 1 and 3 (note 
that Study 2 did not include non-users). The results showed that NCS 
responses to drug cues and drug>food cues (but not food cues) sig-
nificantly separated users from non-users in both Study 1 and Study 3, 
separately (see Supplementary Fig. 5 for receiver operating character-
istic plots and full results). Average craving ratings and NCS responses 
for each study and cue type are also shown in Supplementary Fig. 6.

Drug and food cravings are predicted by shared brain patterns. An 
important debate concerns the question whether drug and food crav-
ings are based on similar brain processes39,41. If drug and food cravings 
are driven by shared brain processes, then drug craving should be pre-
dictable based on a pattern that is trained to predict food craving, and 
food craving should be predictable based on a pattern that is trained 
to predict drug craving—at least in drug users. Conversely, if drug and 
food cravings are based on dissociable brain processes, then better 
predictive accuracy would be gained by training drug-specific and 
food-specific (compared to craving-general) brain patterns.

We, therefore, repeated the procedures described above and 
tested whether training on drug and food data separately would 
improve prediction of craving and whether food craving could be 
predicted based on a pattern trained on drug data only and vice versa 
(Fig. 5). Food craving was predicted similarly well by the overall pat-
tern (76% out-of-sample accuracy ± 4.3% STE, P < 0.001, AUC = 0.82) 
as by a craving pattern trained on food cues only (79% ± 4.1% STE, 
P < 0.001, AUC = 0.88). Food craving was also significantly predicted 
by a pattern trained on drug cues only but with somewhat lower 
accuracy across both drug-using and non-drug-using participants 
(65% ± 4.8% STE, P = 0.005, AUC = 0.68). For the prediction of drug 
craving, the results indicated no substantial improvements for 
training only on modality-specific (drug) cue trials (69% ± 4.9% STE, 
P < 0.001, AUC = 0.75) compared to all cues (70% ± 4.9% STE, P < 0.001, 
AUC = 0.78). Drug craving was also significantly predicted by a pat-
tern that was trained only on food trials (66% ± 5.1% STE, P = 0.004, 
AUC = 0.74). Thus, we did not find evidence for a double dissociation 
between drug and food craving but, rather, significant cross-prediction 
of drug and food craving. Most notably, the NCS performed as well as 
the two cue-specific patterns. Together, this supports the hypothesis 
of shared representations between drug and food craving and across 
drug types.

Modulation by cognitive regulation strategies
Finally, we used a GLM to assess how craving ratings and responses of 
the NCS were modulated by the cognitive Regulation of Craving task 

Table 2 | Predictive performance of the NCS and effect sizes 
for each study sample

Dataset Cues Sample n Prediction–
outcome 
(glmfit_
multilevel)

Effect 
size 
(Cohen’s 
d)

Study 1a Cigarette 
and food 
cues

Cigarette 
smokers

21 β = 0.22, 
STE = 0.09, 
t(20) = 2.45, 
P = 0.024

d = 0.55

Study 1b Cigarette 
and food 
cues

Non-smokers 22 β = 0.46, 
STE = 0.07, 
t(21) = 6.77, 
P < 0.001

d = 1.48

Study 2 Alcoholic 
drinks and 
food cues

Alcohol users 17 β = 0.32, 
STE = 0.11, 
t(16) = 2.76, 
P = 0.014

d = 0.69

Study 3a Cocaine 
and food 
cues

Cocaine users 21 β = 0.36, 
STE = 0.09, 
t(20) = 3.87, 
P = 0.001

d = 0.87

Study 3b Cocaine 
and food 
cues

Non-users 18 β = 0.58, 
STE = 0.09, 
t(17) = 6.11, 
P < 0.001

d = 1.48

All studies 99 β = 0.38, 
STE = 0.04, 
t(98) = 9.21, 
P < 0.001

d = 0.93
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that was employed in all five studies. Across all participants, craving 
ratings were influenced by cue type (drug versus food, F(1,388) = 95.5, 
P < 0.001, 95% CI: −0.44, −0.29) and regulation instruction (NOW 
versus LATER, F(1,388) = 97.6, P < 0.001, 95% CI: 0.32, 0.49). Drug users 
reported greater overall craving (F(1,388) = 74.2, P < 0.001, 95% CI: 0.36, 
0.58), and this group effect interacted with both regulation instruction 
(F(1,388) = 4.51, P = 0.034, 95% CI: 0.01, 0.17) and cue type (F(1,388) = 191.5, 
P < 0.001, 95% CI: 0.44, 0.59), such that drug users craved drugs 
(t(97) = 14.5, P < 0.001, 95% CI: 1.69, 2.23, Cohen’s d = 2.94) but not food 
(t(97) = −0.67, P = 0.50, 95% CI: −0.34, 0.17, Cohen’s d = 0.14) more than 
non-users and that they showed slightly higher regulation effects than 
non-users. Notably, these effects were qualified further by a significant 
three-way interaction among group, cue type and regulation condi-
tion (F(1,388) = 21.7, P < 0.001, 95% CI: 0.05, 0.12; Fig. 3c). Although the 
regulation effect was significant for both drug and food cues in both 
users and non-users, the difference between NOW and LATER condi-
tion was significantly smaller in the drug condition compared to the 
food condition in non-users (t(37) = −4.22, P < 0.001, 95% CI: −0.77, −0.27, 
Cohen’s d = 0.67), who reported low craving for drugs overall. Consist-
ently, drug users had a somewhat larger regulation effect (difference 
between NOW and LATER condition) for drug compared to food cues 
(t(58) = 2.14, P = 0.037, 95% CI: 0.01, 0.35, Cohen’s d = 0.28).

Similarly to craving ratings, responses of the NCS were influenced 
by cue type (drug versus food, F(1,388) = 70.4, P < 0.001, 95% CI: −0.51, 
−0.83) and by regulation instruction (NOW versus LATER, F(1,388) = 35.5, 
P < 0.001, 95% CI: 0.28, 0.55), suggesting that cognitive regulation 
strategies modify NCS responses. Drug users versus non-users had 
marginally greater NCS responses overall (F(1,388) = 3.0, P = 0.085, 95% CI: 
−0.05, 0.75). Drug users’ versus non-users’ signature response differed 
with respect to cue type (F(1,388) = 57.5, P < 0.001, 95% CI: 0.90, 1.53), such 
that drug users had higher NCS responses to drug cues than non-users 
(t(97) = 4.39, P < 0.001, 95% CI: 0.56, 1.49, Cohen’s d = 0.90), whereas 
NCS responses to food cues did not significantly differ (t(97) = −1.13). 
Furthermore, drug users’ versus non-users’ signature response differed 
with respect to regulation condition (F(1,388) = 9.15, P = 0.003, 95% CI: 
0.15, 0.69), such that users had larger NCS responses than non-users 
in the NOW condition (t(97) = 2.53, P = 0.013, 95% CI: 0.12, 1.00, Cohen’s 
d = 0.52) but not in the LATER condition (t(97) = 0.71) (Fig. 3c), which was 
likely driven by more room to downregulate craving in users compared 
to non-users. The three-way interaction among group, regulation and 
cue type was not significant for NCS responses (F(1,388) = 0.0).

Affective stimulus characteristics. We next explored how 
self-reported craving and the NCS were related to intrinsic 
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Fig. 3 | Predictive performance of the NCS. a, Receiver operating characteristic 
plot for the prediction of highest versus lowest levels of craving (forced-choice 
discrimination, n = 99). b, Individual datapoints and slopes for the relationship 
between craving levels and NCS for all five datasets (significant positive 
association in each study; Table 2). c, Average levels of craving ratings (on the 
x axis) and NCS responses (on the y axis) for each of the four experimental 

conditions (drug versus food cues and NOW versus LATER instruction) and within 
each dataset. Gray lines show individual slopes across the four conditions. Dots 
indicate individual data points for each condition and participant. Horizontal 
and vertical error bars indicate s.e.m. for ratings and NCS pattern expression, 
respectively (Study 1a: n = 21; Study 1b: n = 22; Study 2: n = 17; Study 3a: n = 21; 
Study 3b: n = 18).
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craving-related image features of the different food and drug cues. 
For this purpose, we employed a deep learning neural network that 
has been previously trained to detect 20 different affective states, 
including craving, in visual images (‘EmoNet’43). This allowed us to test 
whether single-trial craving ratings and NCS responses were associated 
with the EmoNet visual ‘craving’ output unit on a stimulus-by-stimulus 
basis. EmoNet ‘craving’ output is a probability score indicating the pre-
dicted probability that humans will label an image as ‘craving’ related 
and reflects a high-level abstraction of visual input. A multi-level GLM 
confirmed that both stimulus-to-stimulus craving ratings (β = 0.04, 
STE = 0.00, t(95) = 10.5, P < 0.001) and NCS responses (β = 0.02, 
STE = 0.00, t(95) = 6.80, P < 0.001) were strongly and positively asso-
ciated with the automatic EmoNet ‘craving’ scores for the stimuli (see 
Supplementary Fig. 7 for additional results). Notably, the association 
between craving ratings and NCS remained highly significant when con-
trolling for ‘craving’ stimulus features (β = 0.18, STE = 0.02, t(95) = 8.60, 
P < 0.001), ruling out stimulus features as the main or only source of 
NCS variability. Instead, the NCS significantly mediated the effects of 
EmoNet’s ‘craving’ output on self-reported craving (P = 0.011; Fig. 6).

Discussion
Craving contributes to multiple behaviors that are detrimental to 
physical and mental health in the long term, including smoking, alco-
hol drinking, overeating and gambling4,5, and is arguably one of the 
most central processes in SUDs6. Like other key transdiagnostic pro-
cesses—and human behavior more broadly—craving results from brain 
function. However, it is typically assessed using subjective measures 
that require introspection and are sensitive to context6; thus, there is 
a strong need for biomarkers, and particularly neuromarkers, based 
on brain function36,37,44–46. Such biomarkers can identify mechanistic 
targets that can aid in monitoring disease progression (monitoring 
biomarkers according to the FDA), identifying individuals at risk for 
SUDs and future weight gain (prognostic biomarkers), predicting 
treatment response (predictive biomarkers) and serving as targets 
for neuromodulatory and behavioral interventions34.

In this study, we used machine learning to identify a distributed 
brain pattern—that we term the NCS as a reference for future use—that 
tracks the degree of craving when applied to new individuals, across 
different diagnostic groups, scanners and scanning parameters. Nota-
bly, this pattern separated drug users from non-users based on brain 
responses to drug cues but not food cues. Thus, it is an important step 
toward a diagnostic neuromarker of substance use. Furthermore, 

given the role of self-reported craving in predicting outcomes4,5, this 
brain-based pattern may function as both a diagnostic and predictive 
biomarker with potential utility in predicting clinically relevant indi-
vidual differences and future outcomes. Future studies could build 
on these findings to test whether the NCS responds to therapeutic 
interventions that reduce craving and/or drug use and whether it has 
predictive value for long-term clinical outcomes, such as drug relapse 
or weight gain. In addition, we found that the NCS is sensitive to cog-
nitive regulation strategies, indicating that it may be psychologically 
modifiable. This is important because psychological and behavioral 
interventions can be effective for SUDs, but their mechanisms are 
poorly understood. Furthermore, current interventions are associated 
with high rates of relapse and could be improved47. Future models could 
also be developed based on other data types (for example, resting-state 
fMRI and imaging in animals) or their combination37,45.

Our results also offer new insight into a longstanding debate con-
cerning the question whether craving of drugs and food share common 
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underlying brain processes, especially in motivation-related circuits39. 
We show that craving of various types of drugs and food can be pre-
dicted by largely shared whole-brain activity patterns. Indeed, the 
results demonstrate that craving-related responses to cues for legal 
and illegal drugs and for highly palatable food items are surprisingly 
similar and not dissociable at the fMRI pattern level in both drug-using 
and non-drug-using adults. This is noteworthy, especially as most of the 
non-users in the present studies were not obese or ‘food addicted’ but, 
rather, healthy controls. Notably, this overlap is consistent with models 
suggesting that drug craving depends on systems evolved for seeking 
highly palatable food and other primary rewards39. Future research 
could test whether the NCS also responds to less palatable or healthy 
food items and to other types of primary and secondary rewards.

Some areas in the NCS, including the vmPFC and VS/NAc, have 
been broadly implicated in reward and valuation48,49 and have long 
been associated with craving and substance use across species. Several 
prior studies and meta-analyses38,40,50 have demonstrated a central role 
of vmPFC, ventral striatum, amygdala, insula and posterior cingulate 
cortex in drug and food cue reactivity and craving (although findings 
across meta-analyses are inconsistent). The vmPFC has been targeted 
in repetitive transcranial magnetic stimulation (rTMS) studies to suc-
cessfully reduce drug craving51. The positive peaks of the NCS in this 
area could, thus, serve as a more precise target for neurostimulation. 
Future studies can test whether successful neurostimulation of vmPFC 
also reduces NCS expression and alters connectivity of the vmPFC with 
other NCS core areas, such as the ventral striatum.

The insula is connected to many regions of the NCS and has been 
previously associated with craving52. Lesions in various insular loca-
tions have been shown to reduce the urge to use drugs and facilitate 

smoking cessation53, which could reflect the role of the insula in the 
interoceptive component of drug craving54,55. The NCS has positive 
weights (at uncorrected thresholds) in the mid and posterior insula, 
in line with these previous reports. However, the anterior insula also 
displayed negative weights in the NCS (at uncorrected thresholds), 
revealing a potentially more complex role of different insula subre-
gions in craving. Furthermore, the insula might be more prominent 
to bodily cues of withdrawal, craving and negative affect52, as well as 
for nutrient-related reward signals56, whereas areas such as amygdala 
or vmPFC (which are more prominent in the NCS) are related to crav-
ing evoked by external cues52, such as those employed in the present 
datasets.

The NCS’s weights were largely negative in lateral prefrontal 
cortex, lateral parietal areas, somatosensory cortex and precuneus, 
indicating that activity in these areas is associated with reduced crav-
ing. Lateral prefrontal cortex, particularly, is known to be involved in 
cognitive control and emotion regulation57, including the cognitive 
Regulation of Craving (for example, as shown previously in the same 
datasets58,59) and by others60–63. This area is also involved in the regula-
tion of dietary decision-making, such as when focusing more on health 
aspects and long-term consequences of foods64. The negative weights 
of the NCS in these areas are, thus, consistent with these previous 
findings and recent simulation studies65 that suggest a causal role for 
lateral prefrontal cortex in the regulation of drug and food craving.

Finally, predictive NCS features were also found in occipital and 
parietal brain areas associated with visual processing and attention 
allocation. Our control analyses demonstrated that those effects may 
not be due to differences in low-level visual stimulus features. The 
application of a deep neural network43 showed that both behavioral 
craving ratings and NCS responses were partially driven by complex, 
craving-related stimulus features, as captured by EmoNet’s ‘Craving’ 
output. However, the NCS was associated with craving ratings above 
and beyond elementary and craving-related image features and par-
tially mediated their effects on ratings, ruling out that this association 
was driven purely or primarily by low-level or complex image features 
or content. We also note that NCS weights in visual and attentional 
areas may reflect the effects of recurrent connections and top-down 
(content-related and meaning-related) effects on visual processing.

In sum, the NCS further extends prior work in several ways. First, 
it includes strong positive and negative weights in brain areas not 
previously associated with craving, such as the cerebellum and lateral 
temporal and parietal areas. These areas are connected to regions more 
traditionally associated with craving and might constitute new targets 
for investigation and intervention. Second, the NCS is a precise and 
replicable pattern, including relative activity levels across voxels within 
key regions and relative activity across networks. Thus, it constitutes a 
reproducible brain model30,66 of craving that can be empirically quanti-
fied and validated in any new brain imaging study or dataset.

The present findings have some limitations that could be 
addressed in future studies. The included studies used a limited set 
of highly appetitive cues. Future studies could use a larger range 
of stimuli, including less palatable (and healthier) food items or 
non-craving-related (neutral) cues. Greater variation in craving ratings 
should, in principle, lead to increased discrimination accuracy between 
low and high craving. We also note that hunger ratings were available in 
Study 2 and did not correlate with NCS responses. Nevertheless, future 
work is needed to characterize how hunger or food deprivation modu-
lates NCS responses to food (and other) cues or how NCS responses 
might differ in overweight or obese participants. Future studies could 
also test other modalities of drug and food cues (such as cigarette 
smoke or food smells and videos). The present study used craving rat-
ings as the predicted outcome and did not have a non-craving control 
condition in the same group of participants. Although our supplemen-
tal analyses show that the NCS is distinct from other signatures that 
predict other types of affect ratings, the discriminant validity of the 
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NCS should be further evaluated in future studies. Another important 
future direction will be to validate whether the NCS predicts other cor-
relates of craving, such as psychophysiological responses to drug cues, 
event-related potentials67 and other types of behavioral measures68. In 
addition, fMRI has an inherently limited spatial resolution that cannot 
pinpoint the cellular or microstructural processes associated with crav-
ing or different types of craving. However, craving cannot be directly 
assessed in animals, and this work fills a crucial gap across species 
and brain systems, which is important for translating neuroscientific 
findings for human clinical use. It is also important for future transla-
tional applications of MRI-based neuromarkers, which will inevitably 
use different scanners, hardware and processes that evolve over time, 
thus requiring a focus on large-scale patterns that are generalizable 
across studies, scanners, groups, different pre-processing protocols 
and other factors.

In both Western and Eastern philosophy, craving has been con-
sidered a source of suffering and unhappiness. Although craving is 
an important feature of SUDs, eating disorders and other psychiatric 
conditions, it is also a general aspect of human experience. Identifying 
the neurobiological basis of this important driver of human behavior 
is, thus, an important step in mapping brain circuits to basic affective 
and mental processes. Here we introduced the NCS—to our knowledge, 
the first fMRI-based neuromarker of drug and food craving—which 
classifies drug users from non-users based on responses to drug but 
not food cues. As such, it offers a promising target for future research 
and clinical interventions.
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Methods
Participants
The present analysis used the pooled data from n = 99 participants (33 
females, MAGE = 34.1 years, SDAGE = 10.8) collected across three inde-
pendent neuroimaging studies (five different participant groups and 
three scanners; Fig. 1 and Supplementary Table 1). Two additional 
participants in Study 1 were excluded in the original study and for the 
present analyses due to vomiting and not following task instructions. 
In Study 2, four additional participants were excluded in the original 
study and for the present analysis due to unanticipated claustrophobia 
and non-completion of the task, one due to providing false informa-
tion during the screening, one due to no responses in some runs of 
the task, two due to having been scanned in the morning and one due 
to excessive movement artifacts. In Study 3, three participants in the 
user group were excluded due to not understanding or not complet-
ing the task, one due to high anxiety and large movement artifacts, 
one due to being a past but not current cocaine user and one control 
participant due to high cocaine craving. Other details regarding the 
methods and procedures as well as other results from these datasets, 
focusing on the effects of regulation on behavior and univariate brain 
responses, are58,59 or will be (Schafer, Potenza & Kober, unpublished 
data) reported elsewhere.

Analyses reported here were not reported previously, and the 
three studies have not been previously combined. Across studies, 
participants were recruited using flyers and ads (in newspapers, online 
bulletin boards, etc.) from communities around Yale and Columbia 
universities. Participants were included in drug-using groups (n = 59, 
MAGE = 34.6 years, SDAGE = 11.2, 18 females) based on verified clinical 
measures (for example, structured clinical interviews for diagno-
sis and/or Fagerström test of nicotine dependence). Information 
on the severity and duration of use is presented in Supplementary 
Table 1. Individuals were included in ‘healthy control’ groups (n = 40, 
MAGE = 33.4 years, SDAGE = 10.5, 15 females) if they were (1) age-matched, 
sex-matched and race-matched to the SUD group in each respective 
study; (2) did not qualify for any SUD diagnosis or primary psychiatric 
diagnoses; and (3) did not regularly consume the substance of the SUD 
group in each respective study (that is, matched healthy controls for 
the cigarette-smoking group did not regularly smoke). Participants in 
the drug-use group in Study 1 were heavy daily smokers who smoked 
an average of 15.7 cigarettes every day. Participants in the drug-use 
groups in Studies 2 and 3 completed diagnostic interviews and ful-
filled Diagnostic and Statistical Manual of Mental Disorders, Fourth 
Edition, criteria for SUD (alcohol and cocaine, respectively). None 
of the participants was recruited for a treatment study. In Studies 2 
and 3, participants were excluded if they were seeking treatment for 
their drug use. Drug users did not significantly differ from non-users 
in age, sex or racial/ethnic background. Compared to non-users, drug 
(especially cocaine) users had significantly lower years of education 
(Supplementary Table 1; 15.5 years versus 14.0 years, P < 0.001). We, 
therefore, checked that the resulting NCS was not related to education 
level above and beyond drug-use status.

To avoid alterations in brain responses and to ensure craving, we 
made sure that participants (drug users or controls) were not intoxi-
cated and were drug-negative at the time of scanning. In Study 1 (ciga-
rette smokers and their matched controls), participants were asked not 
to smoke, eat or drink for at least 2 hours before their study appoint-
ment (resulting in a 3–4-hour abstinence at the time of scanning). We 
then used a breathalyzer to measure exhaled carbon monoxide to verify 
that participants indeed abstained from smoking, as instructed. Ques-
tions were used to verify their abstinence from eating and drinking in 
the absence of suitable biological verification methods. In addition, 
participants completed a standard urine toxicology test before the 
scan to verify abstinence from other drugs (opioids, amphetamines, 
methamphetamines, cocaine, barbiturates, benzodiazepines, PCP 
(phencyclidine) and THC (the primary psychoactive ingredient in 

marijuana)). Participants whose test results indicated recent drug or 
alcohol use were not scanned. In Study 2 (individuals with alcohol use 
disorder), participants were told to not drink alcohol since the night 
before and not to eat or drink anything for at least 2 hours before 
their study appointment. We then used a breathalyzer to measure 
exhaled alcohol (the most common proxy for blood alcohol level) to 
verify that participants indeed abstained from drinking alcohol, as 
instructed (questions were used to verify their abstinence from eat-
ing and non-alcohol drinking). In addition, participants completed a 
standard urine toxicology test before the scan to verify abstinence from 
other drugs. Again, participants whose test results indicated drug or 
alcohol use were not scanned. In Study 3 (individuals with cocaine use 
disorder and their matched controls), participants were part of a larger 
study and had spent the prior several nights on an inpatient research 
unit, where they did not have any access to drugs or alcohol. Drug (and 
alcohol) abstinence at the time of scan was, thus, verified by observa-
tion. They were also asked not to eat or drink for at least 2 hours before 
the study participation and were accompanied to the scan directly from 
the clinical research unit by a research assistant. Thus, no participant 
was intoxicated during the experiment.

All participants provided informed consent and were paid for 
their participation in the study. The studies were approved by the 
institutional review boards of Columbia and Yale universities and were 
conducted in compliance with all relevant ethical regulations.

Regulation of Craving task
The Regulation of Craving task is designed to evoke cue-induced crav-
ing of drug and food stimuli and to test participants’ ability to regulate 
craving58. Participants were shown images of drugs and food that were 
known to induce craving (Supplementary Tables 2–4; each image 
was shown only once, and order was randomized across and within 
participants). Additional analyses showed that luminance (β = 0.08, 
STE = 0.02, t(95) = 4.39, P < 0.001, Cohen’s d = 0.45), but not stimu-
lus entropy (β = 0.01, STE = 0.02, t(95) = 0.52, P = 0.60), was signifi-
cantly associated with NCS responses. However, when controlling for 
low-level visual features (stimulus luminance and entropy), single-trial 
NCS responses were still significantly associated with craving ratings 
(β = 0.19, STE = 0.02, t(95) = 9.44, P < 0.001, Cohen’s d = 0.97), suggest-
ing that the NCS does not opportunistically rely on these features for 
prediction of craving ratings.

On each trial, participants were instructed to observe these images 
in one of two ways. The NOW condition served as a craving baseline, 
whereby participants were instructed to consider the immediate posi-
tive consequences of consuming the pictured drug or food. In the 
LATER condition, participants were instructed to employ a cognitive 
strategy drawn from cognitive–behavioral treatments for substance 
use and obesity and to consider the negative consequences of repeated 
consumption of the drug or food.

On each of 100 trials (50 drug trials and 50 food trials, presented 
in random order using E-Prime software), participants were pre-
sented with a 2-second instructional cue (NOW or LATER) followed by 
a 6-second presentation of the drug or food image. After a jittered delay 
period (approximately 3 seconds), participants indicated how much 
they craved the drug or food at that moment (‘How much do you want 
this?’) on a 1–5 Likert scale, on which 1 indicated the lowest (‘not at all’) 
and 5 the highest (‘very much’) level of craving. Trials were separated 
by jittered intervals that followed an exponential distribution, dur-
ing which a fixation cross was displayed. Prior work69–71 including the 
results from the pooled datasets58,59 have confirmed that participants 
report less craving for food and drugs in the regulation (LATER) com-
pared to the craving (NOW) condition.

fMRI data acquisition and pre-processing
Data were collected on three different scanners at Columbia and Yale 
universities using different acquisition parameters. Data underwent 
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standard pre-processing in SPM (versions 5, 8 and 12) including slice 
time correction, realignment, motion correction, warping and smooth-
ing with a 6-mm full width at half maximum (FWHM) kernel. No data 
censoring was used. Differences in acquisition and pre-processing 
across datasets are, in fact, helpful in the current context, as they ensure 
that our pooled findings are not dependent on such details30,72.

fMRI single-trial models
For each participant, we first computed a first-level GLM using SPM8 and 
custom scripts (https://github.com/canlab). These models contained 
separate regressors for trials in the same condition and rating level (1–5) 
per run (modeled at 8-second duration each). One additional regressor 
was added to model activity related to ratings (3 seconds) across all tri-
als. Furthermore, 24 movement regressors (estimates for displacement 
and rotation in three dimensions, their derivatives, squared movement 
estimates and derivatives of squared movement estimates) and spike 
regressors (based on the identification of global outliers, coded as 1 
for the outlier timepoint and 0 for all other timepoints) were added as 
regressor of no interest to control for motion artifacts.

Next, we averaged the resulting β-images for each participant 
within each rating level. This resulted in up to five β-images per par-
ticipant that reflected craving levels from 1 to 5, respectively. If a par-
ticipant did not have any ratings at a given level, a map for that level 
was not created for that participant (18 participants had one missing 
craving level, and four participants had two missing levels). To bring 
all images to the same scale (thus increasing comparability across 
studies and scanners) and to reduce the impact of potential outliers, 
each trial-averaged β-image was scaled (divided) by the L2 norm. An 
inclusive gray matter mask was applied to exclude voxels that likely 
contain white matter or cerebrospinal fluid only.

Training and cross-validation of the NCS
The resulting images for all five levels of craving for each training partici-
pant were then used for linear prediction of craving using LASSO–PCR73 
and default parameters (to avoid overfitting). LASSO–PCR is a machine 
learning algorithm that is well suited for prediction of continuous out-
comes based on large feature sets, such as whole-brain imaging data, 
which are characterized by substantially higher number of potential pre-
dictive features (that is, voxels) than outcome data points (for example, 
rating levels by subjects) and by a non-independence of these features 
(that is, voxel activity is strongly covaried across regions and functional 
networks). LASSO–PCR avoids overfitting by first performing data reduc-
tion using principal component regression (PCR), thereby identifying 
brain networks that are characterized by high covariation of voxels. It 
then performs the LASSO algorithm, which reduces the contribution of 
less important or more unstable components by shrinking their regres-
sion weights toward zero. Voxel weights can be reconstructed based on 
their scores for the different components, thus rendering the resulting 
classifier interpretable and applicable to new datasets.

We used a ten-fold cross-validation procedure to evaluate the 
predictive accuracy of the classifier. Thus, we divided the data into ten 
folds that were stratified by studies. β-images of any given participant 
(corresponding to all levels of craving) were always held out in the same 
fold. In each iteration, the classifier was trained on the remaining data 
and then tested on the held-out data by calculating predicted level of 
craving (or ‘NCS response’) as the dot product of the trained NCS and 
each held-out β-image. This out-of-sample-predicted level of craving 
was used to assess differences in NCS responses between low and 
high craving ratings, experimental conditions (instruction and cue 
type) and drug users versus controls. Because NCS responses reflect 
predicted ratings, they are, in principle, on the same scale as craving 
ratings but not restricted to whole numbers between 1 and 5. For train-
ing and testing of drug-craving and food-craving patterns separately, 
the same procedure was repeated but using only either drug or food 
contrast images, respectively.

Bootstrapping and thresholding
To assess the voxels with the most reliable positive or negative weights, 
we performed a bootstrap test. In total, 10,000 samples with replace-
ments were taken from the paired brain and outcome data, and the 
LASSO–PCR was repeated for each bootstrap sample. Two-tailed, 
uncorrected P values were calculated for each voxel based on the pro-
portion of weights above or below zero23,74. FDR correction was applied 
to P values to correct for multiple comparisons across the whole brain. 
Significant cortical clusters (Table 1) were automatically labeled using 
a multimodal cortical parcellation75; basal ganglia regions are based 
on ref. 76; cerebellar regions are based on ref. 77; and brainstem regions 
are based on a combination of studies. Large-scale network names are 
based on an established resting-state parcellation78.

Permutation tests
Statistical significance of the cross-validated prediction accuracy was 
assessed using permutation tests. In each of 5,000 iterations, crav-
ing ratings within each cohort were randomly permuted, and training 
and cross-validation was performed on the permuted data to estab-
lish a null distribution for performance measures (mean square error, 
root-mean-square error, mean absolute error and prediction–outcome 
correlation). Observed performance measures were compared to these 
permutation-based null distributions to obtain non-parametric P values.

Classification analyses
We used binary receiver operating characteristic plots to illustrate the 
ability of the NCS to separate high versus low levels of craving using 
forced-choice tests (Fig. 2), where pattern expression values (the dot 
product of the held-out β-images with the classifier weights) were 
compared for each participant’s highest and lowest level of craving, 
and the higher value was chosen as the highest level of craving. To 
separate drug users from non-users (Fig. 4b and Supplementary Fig. 5),  
pattern expression values (separately for drug, food or drug>food 
contrasts) for each participant were submitted to a single-interval 
test, thresholded for optimal overall accuracy. AUC is provided as a 
thresholded-independent measure of classification performance. 
Binomial tests were used to assess the statistical significance of  
classification accuracy.

Other statistical analyses
Data collection and analysis were not performed blinded to the con-
ditions of the experiments. GLMs and t-tests were used to assess NCS 
effects while statistically controlling for potential confounds, such as 
age, sex, education, head motion and signals, from white matter and 
ventricles. GLMs and ANOVA were used to test the effects of regulation 
and cue type on behavioral ratings and NCS responses. Data distribu-
tion was assumed to be normal, but this was not formally tested. No 
statistical methods were used to pre-determine sample sizes, but our 
sample sizes are similar to those reported in previous publications23.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data, meta-data and NCS weight maps are available for non-commercial 
aims at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/
master/Multivariate_signature_patterns/2022_Koban_NCS_Craving 
and at https://doi.org/10.6084/m9.figshare.21174256.

Code availability
MATLAB code for analyses is available at https://github.com/can-
lab. Custom code to train and apply the NCS is available at https://
github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/
Multivariate_signature_patterns/2022_Koban_NCS_Craving.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection E-Prime 1.0 (Study 1) and 2.0 (Studies 2 and 3)

Data analysis Matlab 2018b and 2021b; SPM5, 8, and 12; custom code available on https://github.com/canlab

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data, meta-data, and NCS weight maps are available for non-commercial aims at: https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/

Multivariate_signature_patterns/2022_Koban_NCS_Craving.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size (N=99) was based on the availability of existing study data and is comparable with previous studies that have used a similar 

approach in other domains (e.g., Wager, 2013).

Data exclusions All participants whose data has been included in the previous studies were also included for this manuscript. Two participants that were 

excluded in the original study on cigarette craving were also excluded in the present analysis.

Replication Main effects of experimental conditions replicate across 3 cohorts of users and 2 cohorts of matched control participants. 

Classifier performance is assessed using cross-validation and replicates in all 5 cohorts. Separation of drug users versus non-users by the 

classifier was replicated across two studies. The classifier is available for future studies to test generalizability.

Randomization Quasi-experimental groups: drug users versus non-users (randomization not possible). We statistically controlled for age, sex, education, and 

average head motion by adding these variables as covariates to a general linear model. 

Other factors were manipulated and randomly presented within-subjects in different trials (e.g., type of cue, regulation condition).

Blinding Participant could not be blinded to their drug use status. Data acquisition and analysis were not blind to drug user status. Cue-type and 

regulation-condition were randomly presented in the scanner (without the presence of the experimenter) 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics The present analysis used the pooled data from N=99 participants (33 female) collected across three independent 

neuroimaging studies (five different participant groups, three scanners, see Figure 1 and Table 3). Detailed methods and 

procedures as well as other results from these data sets, focusing on the effects of regulation on behavior and univariate 

brain responses, are reported elsewhere [74-76]. 

Recruitment Participants were recruited using flyers and ads (in newspapers, online bulleting boards, etc.) from communities around Yale 

and Columbia Universities. Participants were included in drug using groups (N=59, MAGE=34.6 years, 18 female) based on 

verified clinical measures (e.g., structured clinical interviews for diagnosis and/or Fagerström test of nicotine dependence). 

Individuals were included in “healthy control” groups (N=40, MAGE=33.4 years, 15 female) if they were (1) age-, sex-, and 

race-matched to the SUD group in each respective study, (2) did not qualify for any SUD diagnosis or primary psychiatric 

diagnoses, and (3) did not regularly consume the substance of the SUD group in each respective study (i.e., matched healthy 

controls for the alcohol-using group did not regularly consume alcohol). Drug users recruited for this study from the New 

Haven and New York communities may not be representative of the entire population of drug users in these communities or 

those in other communities and countries.

Ethics oversight All participants provided informed consent and were paid for their participation. The studies have been approved by the 
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Ethics oversight institutional review boards of Columbia and Yale universities, and were conducted in compliance with all relevant ethical 

regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type event-related fMRI

Design specifications On each of 80 or 100 trials (half drug, half food trials, presented in random order), participants were presented with a 2-

second instructional cue (NOW or LATER) followed by a 6-second presentation of the drug or food image. After a 

jittered delay period (around 3 second), participants indicated how much they craved the drug or food at that moment 

(”How much do you want this?”) on a 1-5 Likert scale, on which 1 indicated the lowest (“not at all”) and 5 the highest 

(“very much”) level of craving. Trials were separated by a jittered intertrial interval around 4s, during which a fixation 

cross was displayed.

Behavioral performance measures Craving ratings (not performance-related)

Acquisition

Imaging type(s) fMRI

Field strength 3T

Sequence & imaging parameters Data were collected on three different scanners at Columbia and Yale Universities using different acquisition 

parameters (reported in previous publications). 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software SPM

Normalization Functional images were co-registered to the structural image and warped to the Montreal Neurological Institute 

template

Normalization template MNI template

Noise and artifact removal Motion estimation using SPM, motion parameters, their squares and derivatives, as well as spike regressors for excessive 

movements were included in first-level models as regressors of no interest.

Volume censoring No volume censoring was used.

Statistical modeling & inference

Model type and settings For each participant, we first computed a first level general linear model (GLM) using SPM8 and custom scripts 

(canlab.github.org). These models contained separate regressors for trials in the same condition and rating level (1-5), per 

run (modeled at 8s duration each). One additional regressor was added to model activity related to ratings (3s) across all 

trials. Further, 24 movement regressors (estimates for displacement and rotation in three dimensions, their derivatives, 

squared movement estimates, and derivatives of squared movement estimates) and spike regressors (based on the 

identification of global outliers, coded as 1 for the outlier time point and zero for all other time points) were added as 

regressor of no interest to control for motion artifacts. 

Next, we averaged the resulting beta-images for each participant within each rating level. This resulted in up to five beta 

images per participant that reflected craving levels from 1 to 5, respectively (if a participant did not have any ratings at a 

given level, a map for that level was not created for that participant). In order to bring all images to the same scale (thus 

increasing comparability across studies and scanners) and reduce the impact of potential outliers, L2norming was applied to 

all averaged beta images. An inclusive gray-matter-masks was applied to exclude voxels that likely contain white matter or 

cerebrospinal fluid only.  

The resulting images for each level of craving were then used for linear prediction of craving using LASSO-PCR (least absolute 

shrinkage and selection operator-principal component regression) and default parameters (to avoid overfitting). LASSO-PCR 

is a machine-learning algorithm that is well suited for prediction of outcomes based on large feature sets such as whole brain 

imaging data, which is characterized by substantially higher number of potential predictive features (i.e., voxels) than 

outcome data points (e.g., rating levels by subjects), and by a non-independence of these features (i.e., voxel activity is 

strongly covaried across regions and functional networks). LASSO-PCR avoids overfitting by first performing data reduction 

using principal component regression, thereby identifying brain networks that are characterized by high covariation of voxels. 

It then performs the LASSO algorithm, which reduces the contribution of less important or more unstable components by 

shrinking their regression weights towards zero. Voxel weights can be reconstructed based on their scores for the different 

components, thus rendering the resulting classifier interpretable and applicable to new datasets.  

We used a 10-fold cross-validation procedure to evaluate the predictive accuracy of the classifier. Thus, we divided the data 
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into 10 folds that were stratified by studies.  Beta images of any given participants (corresponding to all levels of craving) 

were always held out in the same fold. In each iteration, the classifier was trained on the remaining data and then tested on 

the hold out data by calculating predicted level of craving as the dot product of the trained NCS and each held out beta-

image. This out-of-sample predicted level of craving was used to assess differences in NCS responses between low and high 

craving ratings, experimental conditions (instruction, cue type), and drug users versus controls. For training and testing of 

drug- and food-craving patterns separately, the same procedure was repeated, but only using either drug or food contrast 

images, respectively.  

 

Effect(s) tested Prediction of high versus low levels of craving (based on 1-5 ratings), drug users vs. not.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Gray-matter mask (whole brain)

Statistic type for inference
(See Eklund et al. 2016)

Prediction across the whole brain gray-matter. Voxel-based thresholding of most consistently positive or negative voxels.

Correction FDR

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis The contrast images for each level of craving were  used for linear prediction of craving using LASSO-PCR 

(least absolute shrinkage and selection operator-principal component regression) and default parameters (to 

avoid overfitting). LASSO-PCR is a machine-learning algorithm that is well suited for prediction of outcomes 

based on large feature sets such as whole brain imaging data, which is characterized by substantially higher 

number of potential predictive features (i.e., voxels) than outcome data points (e.g., rating levels by 

subjects), and by a non-independence of these features (i.e., voxel activity is strongly covaried across regions 

and functional networks). LASSO-PCR avoids overfitting by first performing data reduction using principal 

component regression, thereby identifying brain networks that are characterized by high covariation of 

voxels. It then performs the LASSO algorithm, which reduces the contribution of less important or more 

unstable components by shrinking their regression weights towards zero. Voxel weights can be 

reconstructed based on their scores for the different components, thus rendering the resulting classifier 

interpretable and applicable to new datasets.  

We used a 10-fold cross-validation procedure to evaluate the predictive accuracy of the classifier. Thus, we 

divided the data into 10 folds that were stratified by studies.  Beta images of any given participants 

(corresponding to all levels of craving) were always held out in the same fold. In each iteration, the classifier 

was trained on the remaining data and then tested on the hold out data by calculating predicted level of 

craving as the dot product of the trained NCS and each held out beta-image. This out-of-sample predicted 

level of craving was used to assess differences in NCS responses between low and high craving ratings, 

experimental conditions (instruction, cue type), and drug users versus controls. For training and testing of 

drug- and food-craving patterns separately, the same procedure was repeated, but only using either drug or 

food contrast images, respectively.  
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