Inferring reward and path learning in depressed patients with logistic regression and active inference Panny B¹, Price RB¹ University of Pittsburgh¹

Background

- The two-step task measures decision-making
 - "Model-free" decision making
 - "Model-based" decision making
- Model-free = Reward Learning
- Model-based = Reward Learning and Path Learning
- Active inference (AI) model differs from Hybrid Reinforcement Learning (RL) model because AI includes an "exploration incentive" in addition to "reward"

Participants and Design

104 depressed (>=26 MADRS score) participants

- 1. Completed two-step task at baseline
- 2. Received either ketamine or placebo infusion
- 3. Completed task one day after infusion
- 4. Received either active or sham cognitive training
- 5. Completed task at 3 more visits up to 1 month

Two-Step Task

- Choose rocket at stage 1
- Choose alien at stage 2 and receive reward with 2. probability p
- Probabilities of reward drift after each trial
- Rocket has a "common" (solid line) and "rare" (dashed line) transition

- Ketamine Group x Pre-Post Infusion x Rewarded Trial x Common Transition

Interpretation: log odds ratio of staying with stage 1 rocket choice on next trial

Fixed Effect

Effects

Fixed

Fixed Effects of Treatment Group Trajectories on Decision-Making

Cetamine + Active x Days after Infusion x Rev
Ketamine + Sham x Days after Infusion x Rev
Days after Infusion x Rew
Ketamine + Active x Rev
Ketamine + Sham x Rev
Ketamine + Active x Days af
Ketamine + Sham x Days af
Ketamine + Active x Day
Ketamine + Sham x Day
Rew
Days af
Ketami
Ketami
Day
Ke
Ke
Ketami

Interpretation: log odds ratio of staying with stage 1 rocket choice on next trial

Fixed Effects of Ketamine Infusion on Decision-Making Pre-Post Infusion x Rewarded Trial x Common Transition Ketamine Group x Rewarded Trial x Common Transition Ketamine Group x Pre-Post Infusion x Common Transition Ketamine Group x Pre-Post Infusion x Rewarded Trial Rewarded Trial x Common Transition Pre-Post Infusion x Common Transition Ketamine Group x Common Transition Pre-Post Infusion x Rewarded Trial Ketamine Group x Rewarded Trial Ketamine Group x Pre-Post Infusion Common Transition Rewarded Trial **Pre-Post Infusion** Ketamine Group -0.5 0.5 0.0 Value

arded Trial x Common Transition varded Trial x Common Transition ter Infusion x Common Transition ter Infusion x Common Transition vs after Infusion x Rewarded Trial ys after Infusion x Rewarded Trial varded Trial x Common Transition ter Infusion x Common Transition ine + Active x Common Transition ine + Sham x Common Transition vs after Infusion x Rewarded Trial etamine + Active x Rewarded Trial etamine + Sham x Rewarded Trial ine + Active x Days After Infusion Ketamine + Sham x Days after Infusion Common Transition Rewarded Trial Days After Infusion Ketamine + Active Training Ketamine + Sham Training

Ketamine did not significantly influence "model-free" or "model-based" patterns before and after an infusion

No Reward

Reward on Last Trial

Transition Type

Stay

Switch

Over time, those who received ketamine infusion + cognitive training showed less model-based planning

PMID: 32249207; PMCID: PMC7286766.

^{4.} PMID: 36271279; PMCID: PMC9586964.