BACKGROUND

Fig. 1: The hypothalamic-pituitary-adrenal (HPA) axis drives the stress response by releasing cortisol; if chronic, it affects amygdala and hippocampal volume.

METHODS

Participants: N = 59, Ages 25-65 (mean = 40.4, S.D = 13.2), 66% Female, 86% White.

1. **Stress and Adversity Inventory:** The lifetime stressor severity index was used, combining severity and frequency of all stressors from across the lifespan.

2. **Structural MRI scan:** Amygdala, hippocampal, and intracranial volumes (ICV; total space within the skull) extracted with Freesurfer Software.

3. **Trier Social Stress Test (TSST):** Participants completed a public speaking and mental math task with salivary cortisol collected at 10-min intervals throughout reactivity and recovery periods.

RESULTS

CONCLUSIONS

- Our results supported hypotheses (excluding reactivity predictions), but the associations between brain regions of interest with lifetime and acute stress appear to be due to overall ICV differences.

- Interestingly, the ICV results suggest that a larger brain capacity within the skull is beneficial and may have a protective effect in response to stress (or alternatively that more adaptive stress responses may contribute to growth of a larger brain capacity).

- Future adequately powered studies are needed to determine the relationships between lifetime stress, amygdala and hippocampal volume, and the acute stress response.

Fortunately, we have now completed data on a larger sample of participants to do just that!

REFERENCES

FUNDING

This study was supported by funding from the National Institute of Mental Health (R01 MH084545 to RJD and SMS) in part by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (P50 HD043453).