Introduction

- Anxiety disorders (ADs) emerge in childhood, and, with the onset of puberty, females are twice as likely as males to have ADs.1
- Considerable research has implicated alterations in the white matter (WM) microstructure of prefrontal-limbic tracts, as well as other WM regions, in the pathophysiology of ADs.2,3,4
- These findings are of interest because WM consists primarily of myelinated axons, and myelin plays an important role in mediating optimal neuronal communication.
- Few studies have examined AD-related WM alterations in youth and in relation to sex.
- To further examine associations between childhood ADs, WM microstructural integrity, and sex, we analyzed diffusion tensor imaging (DTI) data from 295 preadolescent youth with and without ADs.

Methods

- Across 3 studies, preadolescent youth with ADs (social, generalized, and/or separation AD) and healthy controls were enrolled between the ages of 8-12 at 2 study sites (UW-Madison and NIMH) and completed a DTI scan on a 3T-scanner.
- The final sample (n=295; 201 F, 94 M) included 163 children with ADs and 132 healthy controls.
- Using a mega-analytic approach, tractography-based and voxelwise analyses examined the main effect of ADs, as well as the AD-by-sex interaction, in relation to 4 WM metrics (fractional anisotropy [FA], radial diffusivity [RD], mean diffusivity [MD], and axial diffusivity [AD]) in 7 bilateral tracts of interest and in WM across the whole brain.

Results

- Tract-based and voxelwise results demonstrated widespread AD-related alterations in DTI metrics across multiple WM regions.
- Critically, AD-related effects demonstrated a significant interaction with sex, such that FA reductions and RD increases were observed exclusively in boys and not in girls, indicating anxiety-related WM alterations may be more robust in males than in females.
- Preadolescent boys with ADs exhibited exhibited decreased FA and elevated RD relative to healthy control boys (P<0.05, corrected) across various WM regions across the brain, in association (UF, EC, IFO, SLF, ST, ILF), commissural (CC), projection (CR, IC), and brainstem (CST, CP, ML) tracts; no group differences were seen in girls.

Discussion

- This study constitutes the largest cross-sectional DTI study of childhood anxiety to date.
- Results show that childhood ADs are associated with broadly distributed alterations in WM microstructure and, importantly, this relationship appears more robust or prominent in boys.
- The findings – particularly the combination of reduced FA and increased RD – point to the possibility that altered myelination processes are associated with childhood ADs.
- While sex-related hormone levels did not account for the sexually dimorphic effect, in vitro evidence suggests differential sensitivity to stress in male vs. female OPCs.5,6
- Future work should investigate the extent to which these findings may play a causal role that would further support targeting WM microstructure, especially in boys with ADs.

Acknowledgments

We thank the participants and families, as well as the staff of the HealthEmotions Research Institute at the Wisconsin Psychiatric Institute and Clinics and the Section on Developmental and Affective Neuroscience at the NIMH. This research was supported by NIH grants R21MH092581, R01MH103763, U01MH112193, T23MH018301, T32GM09053, and BIP project ZA-MH022781, as well as UL1TR002373 from the NIH NCATS CTSA program.

Tract-Based Analyses – Sex-Specific AD-Related Reductions in WM FA – P-values

Voxelwise Analyses – Sex-Specific AD Effects on WM FA and RD

Proposed theoretical framework for explaining the sexually dimorphic WM-anxiety associations

Sample and Analysis

Demographics/Clinical Characteristics

Group x Sex

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Male (n=175)</th>
<th>Female (n=115)</th>
<th>Male (n=175)</th>
<th>Female (n=115)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23.79 (3.66)</td>
<td>25.42 (3.72)</td>
<td>24.31 (3.71)</td>
<td>24.61 (3.57)</td>
</tr>
<tr>
<td>9</td>
<td>23.79 (3.66)</td>
<td>25.42 (3.72)</td>
<td>24.31 (3.71)</td>
<td>24.61 (3.57)</td>
</tr>
<tr>
<td>10</td>
<td>23.79 (3.66)</td>
<td>25.42 (3.72)</td>
<td>24.31 (3.71)</td>
<td>24.61 (3.57)</td>
</tr>
<tr>
<td>11</td>
<td>23.79 (3.66)</td>
<td>25.42 (3.72)</td>
<td>24.31 (3.71)</td>
<td>24.61 (3.57)</td>
</tr>
<tr>
<td>12</td>
<td>23.79 (3.66)</td>
<td>25.42 (3.72)</td>
<td>24.31 (3.71)</td>
<td>24.61 (3.57)</td>
</tr>
</tbody>
</table>

Effects of Age, Sex, and Site on Tract-Based FA Results

Group-by-Sex FA Interactions in 7 Bilateral WM Tracts

Voxelwise RD Results – Group and Group-by-Sex Effects